Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4143


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Cool ISM in S0 Galaxies. II. A Survey of Atomic Gas
The place of lenticular galaxies within the range of types of galaxiesremains unclear. We previously reported the mass of molecular hydrogenfor a volume-limited sample of lenticular galaxies, where we saw thatthe amount of gas was less than that predicted by the return of stellarmass to the interstellar medium. Here we report observations of atomichydrogen (H I) for the same sample. Detections in several galaxies makemore compelling the case presented in our earlier paper that the mass ofcool gas in S0 galaxies cuts off at ~10% of what is expected fromcurrent models of gas return from stellar evolution. The molecular andatomic phases of the gas in our sample galaxies appear to be separateand distinct, both spatially and in velocity space. We propose that themolecular gas arises mostly from the stellar mass returned to thegalaxy, while the atomic hydrogen is mainly accumulated from externalsources (infall, captured dwarfs, etc.). While this proposal fits mostof the observations, it makes the presence of the upper mass cutoff evenmore mysterious.

The host galaxy/AGN connection in nearby early-type galaxies. A new view of the origin of the radio-quiet/radio-loud dichotomy?
This is the third in a series of three papers exploring the connectionbetween the multiwavelength properties of AGN in nearby early-typegalaxies and the characteristics of their hosts. Starting from aninitial sample of 332 galaxies, we selected 116 AGN candidates requiringthe detection of a radio source with a flux limit of ~1 mJy, as measuredfrom 5 GHz VLA observations. In Paper I we classified the objects withavailable archival HST images into "core" and "power-law" galaxies,discriminating on the basis of the nuclear slope of their brightnessprofiles. We used HST and Chandra data to isolate the nuclear emissionof these galaxies in the optical and X-ray bands, thus enabling us (oncecombined with the radio data) to study the multiwavelength behaviour oftheir nuclei. The properties of the nuclei hosted by the 29 coregalaxies were presented in Paper II Core galaxies invariably host aradio-loud nucleus, with a median radio-loudness of Log R = 3.6 and anX-ray based radio-loudness parameter of Log RX = -1.3. Herewe discuss the properties of the nuclei of the 22 "power-law" galaxies.They show a substantial excess of optical and X-ray emission withrespect to core galaxies at the same level of radio luminosity.Conversely, their radio-loudness parameters, Log R ˜ 1.6 and LogRX ˜ -3.3, are similar to those measured in Seyfertgalaxies. Thus the radio-loudness of AGN hosted by early-type galaxiesappears to be univocally related to the host's brightness profile:radio-loud AGN are only hosted by core galaxies, while radio-quiet AGNare found only in power-law galaxies. The brightness profile isdetermined by the galaxy's evolution, through its merger history; ourresults suggest that the same process sets the AGN flavour. In thisscenario, the black holes hosted by the merging galaxies rapidly sinktoward the centre of the newly formed object, setting its nuclearconfiguration, described by e.g. the total mass, spin, mass ratio, orseparation of the SMBHs. These parameters are most likely at the originof the different levels of the AGN radio-loudness. This connection mightopen a new path toward understanding the origin of theradio-loud/radio-quiet AGN dichotomy and provide us with a further toolfor exploring the co-evolution of galaxies and supermassive black holes.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

How large are the bars in barred galaxies?
I present a study of the sizes (semimajor axes) of bars in discgalaxies, combining a detailed R-band study of 65 S0-Sb galaxies withthe B-band measurements of 70 Sb-Sd galaxies from Martin (1995). As hasbeen noted before with smaller samples, bars in early-type (S0-Sb)galaxies are clearly larger than bars in late-type (Sc-Sd) galaxies;this is true both for relative sizes (bar length as fraction ofisophotal radius R25 or exponential disc scalelength h) andabsolute sizes (kpc). S0-Sab bars extend to ~1-10 kpc (mean ~ 3.3 kpc),~0.2-0.8R25 (mean ~ 0.38R25) and ~0.5-2.5h (mean ~1.4h). Late-type bars extend to only ~0.5-3.5 kpc,~0.05-0.35R25 and 0.2-1.5h their mean sizes are ~1.5 kpc, ~0.14R25 and ~0.6h. Sb galaxies resemble earlier-type galaxiesin terms of bar size relative to h; their smallerR25-relative sizes may be a side effect of higher starformation, which increases R25 but not h. Sbc galaxies form atransition between the early- and late-type regimes. For S0-Sbcgalaxies, bar size correlates well with disc size (both R25and h); these correlations are stronger than the known correlation withMB. All correlations appear to be weaker or absent forlate-type galaxies; in particular, there seems to be no correlationbetween bar size and either h or MB for Sc-Sd galaxies.Because bar size scales with disc size and galaxy magnitude for mostHubble types, studies of bar evolution with redshift should selectsamples with similar distributions of disc size or magnitude(extrapolated to present-day values); otherwise, bar frequencies andsizes could be mis-estimated. Because early-type galaxies tend to havelarger bars, resolution-limited studies will preferentially find bars inearly-type galaxies (assuming no significant differential evolution inbar sizes). I show that the bars detected in Hubble Space Telescope(HST) near-infrared(IR) images at z~ 1 by Sheth et al. have absolutesizes consistent with those in bright, nearby S0-Sb galaxies. I alsocompare the sizes of real bars with those produced in simulations anddiscuss some possible implications for scenarios of secular evolutionalong the Hubble sequence. Simulations often produce bars as large as(or larger than) those seen in S0-Sb galaxies, but rarely any as smallas those in Sc-Sd galaxies.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

A high-frequency radio survey of low-luminosity active galactic nuclei
We investigate the high-frequency radio spectra of 20 low-luminosityactive galactic nuclei (LLAGNs) with compact radio cores. Our millimetresurvey with the Nobeyama Millimetre Array (NMA) and analyses ofsubmillimetre archival data that had been obtained with theSubmillimetre Common User Bolometer Array (SCUBA) on the James ClerkMaxwell Telescope (JCMT) reveal the following properties. At least halfof the LLAGNs show inverted spectra between 15 and 96 GHz; we use thepublished data at 15 GHz with the Very Large Array (VLA) in a0.15-arcsec resolution and our measurements at 96 GHz with the NMA in a7-arcsec resolution. The inverted spectra are not artificially made dueto their unmatched beam sizes, because of little diffuse contaminationfrom dust, HII regions, or extended jets in these LLAGNs. Suchhigh-frequency inverted spectra are apparently consistent with a`submillimetre bump', which is predicted by an advection-dominatedaccretion flow (ADAF) model. We find a strong correlation between thehigh-frequency spectral index and low-frequency core power measured withvery-long-baseline-interferometry (VLBI) instruments. The invertedspectra are found exclusively in low-core-power sources, while steepspectra are in high-core-power ones with prominent pc-scale jets. Thissuggests that the ADAF and non-thermal jets may coexist. The flux ratiosbetween disc and jet seem to be different from LLAGN to LLAGN; disccomponents can be seen in nuclear radio spectra only if the jets arefaint.

The Stellar Populations in the Central Parsecs of Galactic Bulges
We present Hubble Space Telescope blue spectra at intermediate spectralresolution for the nuclei of 23 nearby disk galaxies. These objects wereselected to have nebular emission in their nuclei and span a range ofemission-line classifications, as well as Hubble types. In this paper wefocus on the stellar population as revealed by the continuum spectralenergy distribution measured within the central 0.13" (~8 pc) of thesegalaxies. The data were modeled with linear combinations of single-agestellar population synthesis models. The large majority (~80%) of thesurveyed nuclei have spectra whose features are consistent with apredominantly old (>~5×109 yr) stellar population.Approximately 25% of these nuclei show evidence of a component with ageyounger than 1 Gyr, with the incidence of these stars related to thenebular classification. Successful model fits imply an average reddeningcorresponding to AV~0.4 mag and a stellar metallicity of1-2.5 Zsolar. We discuss the implications of these resultsfor understanding the star formation history in the environment ofquiescent and active supermassive black holes. Our findings reinforcethe picture wherein Seyfert nuclei and the majority of low-ionizationnuclear emission-line regions are predominantly accretion-powered andsuggest that much of the central star formation in H II nuclei isactually circumnuclear.Based on observations obtained with the Hubble Space Telescope, which isoperated by AURA, Inc., under NASA contract NAS5-26555.

Antitruncation of Disks in Early-Type Barred Galaxies
The disks of spiral galaxies are commonly thought to be truncated: theradial surface brightness profile steepens sharply beyond a certainradius (3-5 inner disk scale lengths). Here we present the radialbrightness profiles of a number of barred S0-Sb galaxies with theopposite behavior: their outer profiles are distinctly shallower inslope than the main disk profile. We term these ``antitruncations'' theyare found in at least 25% of a larger sample of barred S0-Sb galaxies.There are two distinct types of antitruncations. About one-third show afairly gradual transition and outer isophotes that are progressivelyrounder than the main disk isophotes, suggestive of a disk embeddedwithin a more spheroidal outer zone-either the outer extent of the bulgeor a separate stellar halo. But the majority of the profiles have rathersharp surface brightness transitions to the shallower, outer exponentialprofile and, crucially, outer isophotes that are not significantlyrounder than the main disk; in the Sab-Sb galaxies, the outer isophotesinclude visible spiral arms. This suggests that the outer light is stillpart of the disk. A subset of these profiles are in galaxies withasymmetric outer isophotes (lopsided or one-armed spirals), suggestingthat interactions may be responsible for at least some of the disklikeantitruncations.

The Hubble Space Telescope View of LINER Nuclei: Evidence for a Dual Population?
We study a complete, distance-limited sample of 25 LINERs, 21 of whichhave been imaged with the Hubble Space Telescope. In nine objects wedetect an unresolved nucleus. To study their physical properties, wecompare the radio and optical properties of the nuclei of LINERs withthose of other samples of local active galactic nuclei (AGNs), namely,Seyfert galaxies and low-luminosity radio galaxies (LLRGs). Our resultsshow that the LINER population is not homogeneous, as there are twosubclasses: (1) the first class is similar to the LLRG class, as itextends the population of radio-loud nuclei to lower luminosities; (2)the second is similar to Seyfert galaxies and extends the properties ofradio-quiet nuclei toward the lowest luminosities. The objects areoptimally discriminated in the plane formed by the black hole massversus nuclear radio loudness: all radio-loud LINERs haveMBH>~108Msolar, while Seyfertgalaxies and radio-quiet LINERs haveMBH<~108Msolar. The different natureof the various classes of local AGNs are best understood when thefraction of the Eddington luminosity they irradiate,Lo/LEdd, is plotted against the nuclearradio-loudness parameter: Seyfert galaxies are associated withrelatively high radiative efficienciesLo/LEdd>~10-4 (and high accretionrates onto low-mass black holes); LLRGs are associated with lowradiative efficiencies (and low accretion rates onto high-mass blackholes); all LINERs have low radiative efficiency (and accretion rates)and can be radio-loud or radio-quiet, depending on their black holemass.Based on observations obtained at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555.

Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations
In order to find an explanation for the radiative quiescence ofsupermassive black holes in the local universe, the most accurateestimates for a sample of nearby galaxies are collected for the mass ofa central black hole (MBH), the nuclear X-ray luminosityLX,nuc, and the circumnuclear hot gas density andtemperature, by using Chandra data. The nuclear X-ray luminosityLX,nuc varies by ~3 orders of magnitude and does not show arelationship with MBH or with the Bondi mass accretion rateM˙B LX,nuc is always much lower than expectedif M˙B ends in a standard accretion disk with highradiative efficiency (this instead can be the case of the active nucleusof Cen A). Radiatively inefficient accretion as in the standardadvection-dominated accretion flow (ADAF) modeling may explain the lowluminosities of a few cases; for others, the predicted luminosity isstill too high, and, in terms of Eddington-scaled quantities, it isincreasingly higher than that observed for increasingM˙B. Variants of the simple radiatively inefficientscenario including outflow and convection may reproduce the low emissionlevels observed, since the amount of matter actually accreted is reducedconsiderably. However, the most promising scenario includes feedbackfrom accretion on the surrounding gas; this has the important advantagesof naturally explaining the observed lack of relationship amongLX,nuc, MBH, and M˙B, and evadingthe problem of the fate of the material accumulating in the centralgalactic regions over cosmological times.

The host galaxy/AGN connection in nearby early-type galaxies. Sample selection and hosts brightness profiles
This is the first of a series of three papers exploring the connectionbetween the multiwavelength properties of AGNs in nearby early-typegalaxies and the characteristics of their hosts. We selected twosamples, both with high resolution 5 GHz VLA observations available andproviding measurements down to 1 mJy level, reaching radio-luminositiesas low as 1019 W Hz-1. We focus on the 116radio-detected galaxies as to boost the fraction of AGN with respect toa purely optically selected sample. Here we present the analysis of theoptical brightness profiles based on archival HST images, available for65 objects. We separate early-type galaxies on the basis of the slope oftheir nuclear brightness profiles, into core and power-law galaxiesfollowing the Nuker's scheme, rather than on the traditionalmorphological classification (i.e. into E and S0 galaxies). Our sampleof AGN candidates is indistinguishable, when their brightness profilesare concerned, from galaxies of similar optical luminosity but hostingweaker (or no) radio-sources. We confirm previous findings thatrelatively bright radio-sources (Lr > 1021.5 WHz-1) are uniquely associated to core galaxies. However,below this threshold in radio-luminosity core and power-law galaxiescoexist and they do not show any apparent difference in theirradio-properties. Not surprisingly, since our sample is deliberatelybiased to favour the inclusion of active galaxies, we found a higherfraction of optically nucleated galaxies. Addressing the multiwavelengthproperties of these nuclei will be the aim of the two forthcomingpapers.

Radio sources in low-luminosity active galactic nuclei. IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample
We present the completed results of a high resolution radio imagingsurvey of all ( 200) low-luminosity active galactic nuclei (LLAGNs) andAGNs in the Palomar Spectroscopic Sample of all ( 488) bright northerngalaxies. The high incidences of pc-scale radio nuclei, with impliedbrightness temperatures ≳107 K, and sub-parsec jetsargue for accreting black holes in ≳50% of all LINERs andlow-luminosity Seyferts; there is no evidence against all LLAGNs beingmini-AGNs. The detected parsec-scale radio nuclei are preferentiallyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). The radio luminosity function (RLF) of PalomarSample LLAGNs and AGNs extends three orders of magnitude below, and iscontinuous with, that of “classical” AGNs. We find marginalevidence for a low-luminosity turnover in the RLF; nevertheless LLAGNsare responsible for a significant fraction of present day massaccretion. Adopting a model of a relativistic jet from Falcke &Biermann, we show that the accretion power output in LLAGNs is dominatedby the kinetic power in the observed jets rather than the radiatedbolometric luminosity. The Palomar LLAGNs and AGNs follow the samescaling between jet kinetic power and narrow line region (NLR)luminosity as the parsec to kilo-parsec jets in powerful radio galaxies.Eddington ratios {l_Edd} (=L_Emitted/L_Eddington) of≤10-1{-}10-5 are implied in jet models of theradio emission. We find evidence that, in analogy to Galactic black holecandidates, LINERs are in a “low/hard” state (gas poornuclei, low Eddington ratio, ability to launch collimated jets) whilelow-luminosity Seyferts are in a “high” state (gas richnuclei, higher Eddington ratio, less likely to launch collimated jets).In addition to dominating the radiated bolometric luminosity of thenucleus, the radio jets are energetically more significant thansupernovae in the host galaxies, and are potentially able to depositsufficient energy into the innermost parsecs to significantly slow thegas supply to the accretion disk.

Measuring shapes of galaxy images - II. Morphology of 2MASS galaxies
We study a sample of 112 galaxies of various Hubble types imaged in theTwo Micron All Sky Survey (2MASS) in the near-infrared (NIR; 1-2 μm)J, H and Ks bands. The sample contains (optically classified)32 ellipticals, 16 lenticulars and 64 spirals acquired from the 2MASSExtended Source Catalogue (XSC).We use a set of non-parametric shape measures constructed from theMinkowski functionals (MFs) for galaxy shape analysis. We useellipticity (ɛ) and orientation angle (Φ) as shapediagnostics. With these parameters as functions of area within theisophotal contour, we note that the NIR elliptical galaxies withɛ > 0.2 show a trend of being centrally spherical andincreasingly flattened towards the edge, a trend similar to images inoptical wavelengths. The highly flattened elliptical galaxies showstrong change in ellipticity between the centre and the edge. Thelenticular galaxies show morphological properties resembling eitherellipticals or disc galaxies. Our analysis shows that almost half of thespiral galaxies appear to have bar-like features while the rest arelikely to be non-barred. Our results also indicate that almost one-thirdof spiral galaxies have optically hidden bars.The isophotal twist noted in the orientations of elliptical galaxiesdecreases with the flattening of these galaxies, indicating that twistand flattening are also anticorrelated in the NIR, as found in opticalwavelengths. The orientations of NIR lenticular and spiral galaxies showa wide range of twists.

Stellar Velocity Dispersion and Mass Estimation for Galactic Disks
Available velocity dispersion estimates for the old stellar populationof galactic disks at galactocentric distances r=2L (where L is thephotometric radial scale length of the disk) are used to determine thethreshold local surface density of disks that are stable againstgravitational perturbations. The mass of the disk Mdcalculated under the assumption of its marginal stability is comparedwith the total mass Mt and luminosity LB of thegalaxy within r=4L. We corroborate the conclusion that a substantialfraction of the mass in galaxies is probably located in their darkhalos. The ratio of the radial velocity dispersion to the circularvelocity increases along the sequence of galactic color indices anddecreases from the early to late morphological types. For most of thegalaxies with large color indices (B-V)0 > 0.75, whichmainly belong to the S0 type, the velocity dispersion exceedssignificantly the threshold value required for the disk to be stable.The reverse situation is true for spiral galaxies: the ratiosMd/LB for these agree well with those expected forevolving stellar systems with the observed color indices. This suggeststhat the disks of spiral galaxies underwent no significant dynamicalheating after they reached a quasi-equilibrium stable state.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Radio emission from AGN detected by the VLA FIRST survey
Using the most recent (April 2003) version of the VLA FIRST survey radiocatalog, we have searched for radio emission from >2800 AGN takenfrom the most recent (2001) version of the Veron-Cetty and Veron AGNcatalog. These AGN lie in the ˜9033 square degrees of sky alreadycovered by the VLA FIRST survey. Our work has resulted in positivedetection of radio emission from 775 AGN of which 214 are new detectionsat radio wavelengths.Tables 3 and 4 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/35

A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation
We explore the evolution in power of black holes of all masses, andtheir associated jets, within the scheme of an accretion rate-dependentstate transition. Below a critical value of the accretion rate allsystems are assumed to undergo a transition to a state where thedominant accretion mode is optically thin and radiatively inefficient.In these significantly sub-Eddington systems, the spectral energydistribution is predicted to be dominated by non-thermal emission from arelativistic jet whereas near-Eddington black holes will be dominatedinstead by emission from the accretion disk. Reasonable candidates forsuch a sub-Eddington state include X-ray binaries in the hard andquiescent states, the Galactic Center (Sgr A*), LINERs, FR I radiogalaxies, and a large fraction of BL Lac objects. Standard jet physicspredicts non-linear scaling between the optically thick (radio) andoptically thin (optical or X-ray) emission of these systems, which hasbeen confirmed recently inX-ray binaries. We show that this scaling relation is also a function ofblack hole mass and only slightly of the relativistic Doppler factor.Taking the scaling into account we show that indeed hard and quiescentstate X-ray binaries, LINERs, FR I radio galaxies, and BL Lacs can beunified and fall on a common radio/X-ray correlation. This suggests thatjet domination is an important stage in the luminosity evolution ofaccreting black hole systems.

A Fundamental Plane of black hole activity
We examine the disc-jet connection in stellar mass and supermassiveblack holes by investigating the properties of their compact emission inthe X-ray and radio bands. We compile a sample of ~100 active galacticnuclei with measured masses, 5-GHz core emission, and 2-10 keVluminosities, together with eight galactic black holes with a total of~50 simultaneous observations in the radio and X-ray bands. Using thissample, we study the correlations between the radio (LR) andthe X-ray (LX) luminosity and the black hole mass (M). Wefind that the radio luminosity is correlated with bothM andLX, at a highly significant level. In particular, we showthat the sources define a `Fundamental Plane' in the three-dimensional(logLR, logLX, logM) space, given bylogLR= (0.60+0.11-0.11)logLX+ (0.78+0.11-0.09) logM+7.33+4.05-4.07, with a substantial scatter ofσR= 0.88. We compare our results to the theoreticalrelations between radio flux, black hole mass, and accretion ratederived by Heinz & Sunyaev. Such relations depend only on theassumed accretion model and on the observed radio spectral index.Therefore, we are able to show that the X-ray emission from black holesaccreting at less than a few per cent of the Eddington rate is unlikelyto be produced by radiatively efficient accretion, and is marginallyconsistent with optically thin synchrotron emission from the jet. On theother hand, models for radiatively inefficient accretion flows seem toagree well with the data.

Measuring shapes of galaxy images - I. Ellipticity and orientation
We suggest a set of morphological measures that we believe can help inquantifying the shapes of two-dimensional cosmological images such asgalaxies, clusters and superclusters of galaxies. The method employsnon-parametric morphological descriptors known as the Minkowskifunctionals in combination with geometric moments widely used in theimage analysis. For the purpose of visualization of the morphologicalproperties of image contour lines, we introduce three auxiliary ellipsesrepresenting the vector and tensor Minkowski functionals. We study thediscreteness, seeing and noise effects on elliptic contours as well astheir morphological characteristics such as the ellipticity andorientation. In order to reduce the effect of noise, we employ atechnique of contour smoothing. We test the method by studying simulatedelliptic profiles of toy spheroidal galaxies ranging in ellipticity fromE0 to E7. We then apply the method to real galaxies, including eightspheroidals, three disc spirals and one peculiar galaxy, as imaged inthe near-infrared Ks-band (2.2 μm) with the Two Micron AllSky Survey. The method is numerically very efficient and can be used inthe study of hundreds of thousands of images obtained in modern surveys.

The size of the broad-line regions in dwarf active galaxies
Using the empirical relation between black hole mass and bulge velocitydispersion established for active and quiescent galaxies, we derive thesizes of the broad-line regions (BLRs) for 22 dwarf active galaxies.These sizes are compared with those of Seyfert 1 galaxies and quasars.We find that the size of the BLRs of Seyfert 1s and quasars is wellscaled with the luminosity of the Hα line with a slope of ~=0.5,and dwarf active galaxies show larger BLRs than the values predicted bythe BLR size-luminosity relation for Seyfert 1 galaxies andquasi-stellar objects (QSOs). The results suggest that the BLRs of dwarfactive galactic nuclei (AGN) have lower ionization or/and lower densitythan those of Seyfert 1 galaxies and QSOs. Photoionization calculationsshow that the large BLRs are consistent with observed emission linespectra.

An Imaging Survey of Early-Type Barred Galaxies
This paper presents the results of a high-resolution imaging survey,using both ground-based and Hubble Space Telescope images, of a completesample of nearby barred S0-Sa galaxies in the field, with a particularemphasis on identifying and measuring central structures within thebars: secondary bars, inner disks, nuclear rings and spirals, andoff-plane dust. A discussion of the frequency and statistical propertiesof the various types of inner structures has already been published.Here we present the data for the individual galaxies and measurements oftheir bars and inner structures. We set out the methods we use to findand measure these structures, and how we discriminate between them. Inparticular, we discuss some of the deficiencies of ellipse fitting ofthe isophotes, which by itself cannot always distinguish between bars,rings, spirals, and dust, and which can produce erroneous measurementsof bar sizes and orientations.

Circumnuclear Dust in Nearby Active and Inactive Galaxies. II. Bars, Nuclear Spirals, and the Fueling of Active Galactic Nuclei
We present a detailed study of the relation between circumnuclear dustmorphology, host-galaxy properties, and nuclear activity in nearbygalaxies. We use our sample of 123 nearby galaxies withvisible-near-infrared color maps from the Hubble Space Telescope tocreate well-matched, ``paired'' samples of 28 active and 28 inactivegalaxies, as well as 19 barred and 19 unbarred galaxies, that have thesame host-galaxy properties. Comparison of the barred and unbarredgalaxies shows that grand-design nuclear dust spirals are found only ingalaxies with a large-scale bar. These nuclear dust spirals, which arepresent in approximately one-third of all barred galaxies, also appearto be connected to the dust lanes along the leading edges of thelarge-scale bars. Grand-design nuclear spirals are more common thaninner rings, which are present in only a small minority of the barredgalaxies. Tightly wound nuclear dust spirals, in contrast, show a strongtendency to avoid galaxies with large-scale bars. Comparison of theactive galactic nuclei (AGNs)and inactive samples shows that nucleardust spirals, which may trace shocks and angular momentum dissipation inthe interstellar medium, occur with comparable frequency in both activeand inactive galaxies. The only difference between the active andinactive galaxies is that several inactive galaxies appear to completelylack dust structure in their circumnuclear region, while none of theAGNs lack this structure. The comparable frequency of nuclear spirals inactive and inactive galaxies, combined with previous work that finds nosignificant difference in the frequency of bars or interactions betweenwell-matched active and inactive galaxies, suggests that no universalfueling mechanism for low-luminosity AGNs operates at spatial scalesgreater than a ~100 pc radius from the galactic nuclei. The similaritiesof the circumnuclear environments of active and inactive galaxiessuggest that the lifetime of nuclear activity is less than thecharacteristic inflow time from these spatial scales. Anorder-of-magnitude estimate of this inflow time is the dynamicaltimescale. This sets an upper limit of several million years to thelifetime of an individual episode of nuclear activity.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

The Cool Interstellar Medium in S0 Galaxies. I. A Survey of Molecular Gas
Lenticular galaxies remain remarkably mysterious as a class.Observations to date have not led to any broad consensus about theirorigins, properties, and evolution, although they are often thought tohave formed in one big burst of star formation early in the history ofthe universe and to have evolved relatively passively since then. Inthat picture, current theory predicts that stellar evolution returnssubstantial quantities of gas to the interstellar medium; most isejected from the galaxy, but significant amounts of cool gas might beretained. Past searches for that material, though, have provided unclearresults. We present results from a survey of molecular gas in avolume-limited sample of field S0 galaxies selected from the NearbyGalaxies Catalog. CO emission is detected from 78% of the samplegalaxies. We find that the molecular gas is almost always located insidethe central few kiloparsecs of a lenticular galaxy, meaning that ingeneral it is more centrally concentrated than in spirals. We combineour data with H I observations from the literature to determine thetotal masses of cool and cold gas. Curiously, we find that, across awide range of luminosity, the most gas-rich galaxies have ~10% of thetotal amount of gas ever returned by their stars. That result isdifficult to understand within the context of either monolithic orhierarchical models of evolution of the interstellar medium.

Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations
To empirically calibrate the IR surface brightness fluctuation (SBF)distance scale and probe the properties of unresolved stellarpopulations, we measured fluctuations in 65 galaxies using NICMOS on theHubble Space Telescope. The early-type galaxies in this sample includeelliptical and S0 galaxies and spiral bulges in a variety ofenvironments. Absolute fluctuation magnitudes in the F160W (1.6 μm)filter (MF160W) were derived for each galaxy using previouslymeasured I-band SBF and Cepheid variable star distances. F160W SBFs canbe used to measure distances to early-type galaxies with a relativeaccuracy of ~10%, provided that the galaxy color is known to ~0.035 magor better. Near-IR fluctuations can also reveal the properties of themost luminous stellar populations in galaxies. Comparison of F160Wfluctuation magnitudes and optical colors to stellar population modelpredictions suggests that bluer elliptical and S0 galaxies havesignificantly younger populations than redder ones and may also be moremetal-rich. There are no galaxies in this sample with fluctuationmagnitudes consistent with old, metal-poor (t>5 Gyr, [Fe/H]<-0.7)stellar population models. Composite stellar population models implythat bright fluctuations in the bluer galaxies may be the result of anepisode of recent star formation in a fraction of the total mass of agalaxy. Age estimates from the F160W fluctuation magnitudes areconsistent with those measured using the Hβ Balmer-line index. Thetwo types of measurements make use of completely different techniquesand are sensitive to stars in different evolutionary phases. Bothtechniques reveal the presence of intermediate-age stars in theearly-type galaxies of this sample.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS 5-26555.

Chandra Snapshot Observations of Low-Luminosity Active Galactic Nuclei with a Compact Radio Source
The results of Chandra snapshot observations of 11 low-ionizationnuclear emission-line regions (LINERs), three low-luminosity Seyfertgalaxies, and one H II-LINER transition object are presented. Our sampleconsists of all the objects with a flat- or inverted-spectrum, compactradio core in the Very Large Array survey of 48 low-luminosity AGNs(LLAGNs) by Nagar and coworkers in 2000. An X-ray nucleus is detected inall galaxies except one, and their X-ray luminosities are in the range5×1038-8×1041 ergs s-1. TheX-ray spectra are generally steeper than expected from thermalbremsstrahlung emission from an advection-dominated accretion flow. TheX-ray-to-Hα luminosity ratios for 11 of 14 objects are in goodagreement, with the value characteristic of LLAGNs and more luminousAGNs, and indicate that their optical emission lines are predominantlypowered by an LLAGN. For three objects, this ratio is less thanexpected. Comparing with properties in other wavelengths, we find thatthese three galaxies are most likely to be heavily obscured AGNs. We usethe ratio RX=νLν(5 GHz)/LX, whereLX is the luminosity in the 2-10 keV band, as a measure ofradio loudness. In contrast to the usual definition of radio loudness[Ro=Lν(5 GHz)/Lν(B)],RX can be used for heavily obscured(NH>~1023 cm-2, AV>50mag) nuclei. Further, with the high spatial resolution of Chandra, thenuclear X-ray emission of LLAGNs is often easier to measure than thenuclear optical emission. We investigate the values of RX forLLAGNs, luminous Seyfert galaxies, quasars, and radio galaxies andconfirm the suggestion that a large fraction of LLAGNs are radio-loud.

Lensing and the Centers of Distant Early-Type Galaxies
Gravitational lensing provides a unique probe of the inner 10-1000 pc ofdistant galaxies (z~0.2-1). Theoretical studies have predicted that eachstrong lens system should have a faint image near the center of the lensgalaxy, which should, in principle, be visible in radio lenses but hasnever been detected. We study the predicted ``core'' images using modelsderived from the stellar distributions in nearby early-type galaxies. Wefind that realistic lens galaxies produce a remarkably wide range ofcore images, with magnifications spanning some 6 orders of magnitude.More concentrated galaxies produce fainter core images, although notwith any model-independent relation between the galaxy properties andthe core images. Some real galaxies have diffuse cores that should yieldbright core images (magnification μcore>~0.1), but morecommon are galaxies that yield faint core images(μcore<~0.001). Thus, stellar mass distributions aloneare probably concentrated enough to explain the lack of observed coreimages. Observational sensitivity may need to improve by an order ofmagnitude before detections of core images become common. Two-imagelenses should tend to have brighter core images than four-image lenses,so they will be the better targets for finding core images andexploiting these tools for studying the central mass distributions ofdistant galaxies.

Do bulges of early- and late-type spirals have different morphology?
We study HST/NICMOS H-band images of bulges of two equal-sized samplesof early- (TRC3 <= 3) and late-type spiral (mainly Sbc-Sc)galaxies matched in outer disk axis ratio. We find that bulges oflate-type spirals are more elongated than their counterparts inearly-type spirals. Using a KS-test we find that the two distributionsare different at the 98.4% confidence level. We conclude that the twodata sets are different, i.e. late-type galaxies have a broaderellipticity distribution and contain more elongated features in theinner regions. We discuss the possibility that these would correspond tobars at a later evolutionary stage, i.e. secularly evolved bars.Consequent implications are raised, and we discuss relevant questionsregarding the formation and structure of bulges. Are bulges ofearly-type and late-type spirals different? Are their formationscenarios different? Can we talk about bulges in the same way fordifferent types of galaxies?

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Canes Venatici
Right ascension:12h09m36.20s
Declination:+42°32'02.0"
Aparent dimensions:2.754′ × 1.698′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4143
HYPERLEDA-IPGC 38654

→ Request more catalogs and designations from VizieR