Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 6702


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Star Formation Histories of Nearby Elliptical Galaxies. II. Merger Remnant Sample
This work presents high signal-to-noise spectroscopic observations of asample of six suspected merger remnants, selected primarily on the basisof H I tidal debris detections. Single stellar population analysis ofthese galaxies indicates that their ages, metallicities, andα-enhancement ratios are consistent with those of a representativesample of nearby elliptical galaxies. The expected stellar population ofa recent merger remnant, a young age combined with low [α/Fe], isnot seen in any H I-selected galaxy. However, one galaxy (NGC 2534) isfound to deviate from the Z-plane in the sense expected for a mergerremnant. Another galaxy (NGC 7332), selected by other criteria, bestmatches the merger remnant expectations.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

The fundamental plane of isolated early-type galaxies
Here we present new measurements of effective radii, surfacebrightnesses and internal velocity dispersions for 23 isolatedearly-type galaxies. The photometric properties are derived from newmulticolour imaging of ten galaxies, whereas the central kinematics forseven galaxies are taken from forthcoming work by Hau & Forbes.These are supplemented with data from the literature. We reproduce thecolour-magnitude and Kormendy relations and strengthen the result of therecent work of Reda et al. that isolated galaxies follow the samephotometric relations as galaxies in high-density environments. We alsofind that some isolated galaxies reveal fine structure indicative of arecent merger, while others appear undisturbed. We examine theFundamental Plane both in the traditional Re,μe, σ space and also in κ space. Most isolatedgalaxies follow the same Fundamental Plane tilt and scatter for galaxiesin high-density environments. However, a few galaxies notably deviatefrom the Plane in the sense of having smaller M/L ratios. This can beunderstood in terms of their younger stellar populations, which arepresumably induced by a gaseous merger. Overall, isolated galaxies havesimilar properties to those in groups and clusters with a slightenhancement in the frequency of recent mergers/interactions.

The stellar populations of low-luminosity active galactic nuclei - III. Spatially resolved spectral properties
In a recently completed survey of the stellar population properties oflow-ionization nuclear emission-line regions (LINERs) and LINER/HIItransition objects (TOs), we have identified a numerous class ofgalactic nuclei which stand out because of their conspicuous108-9 yr populations, traced by high-order Balmer absorptionlines and other stellar indices. These objects are called `young-TOs',because they all have TO-like emission-line ratios. In this paper weextend this previous work, which concentrated on the nuclear properties,by investigating the radial variations of spectral properties inlow-luminosity active galactic nuclei (LLAGNs). Our analysis is based onhigh signal-to-noise ratio (S/N) long-slit spectra in the 3500-5500Å interval for a sample of 47 galaxies. The data probe distancesof typically up to 850 pc from the nucleus with a resolution of ~100 pc(~1 arcsec) and S/N ~ 30. Stellar population gradients are mapped by theradial profiles of absorption-line equivalent widths and continuumcolours along the slit. These variations are further analysed by meansof a decomposition of each spectrum in terms of template galaxiesrepresentative of very young (<=107 yr), intermediate age(108-9 yr) and old (1010 yr) stellar populations.This study reveals that young-TOs also differ from old-TOs andold-LINERs in terms of the spatial distributions of their stellarpopulations and dust. Specifically, our main findings are as follows.(i) Significant stellar population gradients are found almostexclusively in young-TOs. (ii) The intermediate age population ofyoung-TOs, although heavily concentrated in the nucleus, reachesdistances of up to a few hundred pc from the nucleus. Nevertheless, thehalf width at half-maximum of its brightness profile is more typically100 pc or less. (iii) Objects with predominantly old stellar populationspresent spatially homogeneous spectra, be they LINERs or TOs. (iv)Young-TOs have much more dust in their central regions than otherLLAGNs. (v) The B-band luminosities of the central <~1 Gyr populationin young-TOs are within an order of magnitude of MB=-15,implying masses of the order of ~107-108Msolar. This population was 10-100 times more luminous in itsformation epoch, at which time young massive stars would have completelyoutshone any active nucleus, unless the AGN too was brighter in thepast.

The Epochs of Early-Type Galaxy Formation as a Function of Environment
The aim of this paper is to set constraints on the epochs of early-typegalaxy formation through the ``archaeology'' of the stellar populationsin local galaxies. Using our models of absorption-line indices thataccount for variable abundance ratios, we derive ages, totalmetallicities, and element ratios of 124 early-type galaxies in high-and low-density environments. The data are analyzed by comparison withmock galaxy samples created through Monte Carlo simulations taking thetypical average observational errors into account, in order to eliminateartifacts caused by correlated errors. We find that all threeparameters, age, metallicity, and α/Fe ratio, are correlated withvelocity dispersion. We show that these results are robust againstrecent revisions of the local abundance pattern at high metallicities.To recover the observed scatter we need to assume an intrinsic scatterof about 20% in age, 0.08 dex in [Z/H], and 0.05 dex in [α/Fe].All low-mass objects withM*<~1010Msolar (σ<~130kms-1) show evidence for the presence of intermediate-agestellar populations with low α/Fe ratios. About 20% of theintermediate-mass objects with1010<~M*/Msolar<~1011[110<~σ/(kms-1)<~230 both elliptical andlenticular galaxies] must have either a young subpopulation or a bluehorizontal branch. On the basis of the above relationships, valid forthe bulk of the sample, we show that the Mg-σ relation is mainlydriven by metallicity, with similar contributions from the α/Feratio (23%) and age (17%). We further find evidence for an influence ofthe environment on the stellar population properties. Massive early-typegalaxies in low-density environments seem on average ~2 Gyr younger andslightly (~0.05-0.1 dex) more metal-rich than their counterparts inhigh-density environments. No offsets in the α/Fe ratios areinstead detected. With the aid of a simple chemical evolution model, wetranslate the derived ages and α/Fe ratios into star formationhistories. We show that most star formation activity in early-typegalaxies is expected to have happened between redshifts ~3 and 5 inhigh-density environments and between redshifts 1 and 2 in low-densityenvironments. We conclude that at least 50% of the total stellar massdensity must have already formed at z~1, in good agreement withobservational estimates of the total stellar mass density as a functionof redshift. Our results suggest that significant mass growth in theearly-type galaxy population below z~1 must be restricted to lessmassive objects, and a significant increase of the stellar mass densitybetween redshifts 1 and 2 should be present, caused mainly by the fieldgalaxy population. The results of this paper further imply the presenceof vigorous star formation episodes in massive objects at z~2-5 andevolved elliptical galaxies around z~1, both observationally identifiedas SCUBA galaxies and extremely red objects, respectively.

The photometric properties of isolated early-type galaxies
Isolated galaxies are important because they probe the lowest densityregimes inhabited by galaxies. We define a sample of 36 nearby isolatedearly-type galaxies for further study. Our isolation criteria requirethem to have no comparable-mass neighbours within 2 B-band magnitudes,0.67 Mpc in the plane of the sky and 700 km s-1 in recessionvelocity. New wide-field optical imaging of 10 isolated galaxies withthe Anglo-Australian Telescope confirms their early-type morphology andrelative isolation. We also present imaging of four galaxy groups as acontrol sample. The isolated galaxies are shown to be moregravitationally isolated than the group galaxies. We find that theisolated early-type galaxies have a mean effective colour of(B-R)e= 1.54 +/- 0.14, similar to their high-densitycounterparts. They reveal a similar colour-magnitude relation slope andsmall intrinsic scatter to cluster ellipticals. They also follow theKormendy relation of surface brightness versus size for luminous clustergalaxies. Such properties suggest that the isolated galaxies formed at asimilar epoch to cluster galaxies, such that the bulk of their stars arevery old. However, our galaxy modelling reveals evidence for dust lanes,plumes, shells, boxy and disc isophotes in four out of nine galaxies.Thus at least some isolated galaxies have experienced a recentmerger/accretion event, which may have induced a small burst of starformation. We derive luminosity functions for the isolated galaxies andfind a faint slope of -1.2, which is similar to the `universal' slopefound in a wide variety of environments. We examine the number densitydistribution of galaxies in the field of the isolated galaxies. Only thevery faintest dwarf galaxies (MR>~-15.5) appear to beassociated with the isolated galaxies, whereas anyintermediate-luminosity galaxies appear to lie in the background.Finally, we discuss possible formation scenarios for isolated early-typegalaxies. Early epoch formation and a merger/accretion of galaxies arepossible explanations. The collapse of a large, virialized group is anunlikely explanation, but that of a poor group remains viable.

Nuclear activity and the dynamics of elliptical galaxies
This Letter looks for any correlation between the internal dynamics ofelliptical galaxies and the relatively mild nuclear activity found inmany such systems. We show that there is such a relation in the sensethat the active ellipticals tend to be significantly less rotationallysupported than their inactive cousins. The correlation can partly berelated to the galaxies' luminosities: the brightest galaxies tend to bemore active and less rotationally supported. However, even at lowerluminosities the active and inactive galaxies seem to havesystematically different dynamics. This variation suggests that thereare significant large-scale structural differences between active andinactive elliptical galaxies, and hence that the existence of both typesof system cannot just be the result of random sporadic nuclear activity.

The Halo Mass Distribution of Field and Cluster Early-Type Galaxies
We describe an ongoing program to study the halo kinematics of a broadsample of early-type galaxies using integrated light measurementsobtained with the Hobby-Eberly and Gemini Telescopes.The Hobby-Eberly Telescope is operated by McDonald Observatory on behalfof the University of Texas at Austin, The Pennsylvania State University,Stanford University, Ludwid-Maximilians-Universit at Munchen, andGeorg-August-Universitat Gottingen.Part of this project is based on observations obtained at the GeminiObservatory, which is operated by AURA, INC., under a cooperativeagreement with the NSF on behalf of the Gemini Partnership: The NSF(USA), PPARC (UK), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq(Brazil) and CONICET (Argentina ).

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

Classifications of the Host Galaxies of Supernovae, Set II
Classifications on the DDO system are given for an additional 231 hostgalaxies of supernovae that have been discovered during the course ofthe Lick Observatory Supernova Search with the Katzman Automatic ImagingTelescope (KAIT). This brings the total number of hosts of supernovae(SNe) discovered (or independently rediscovered) by KAIT, which have sofar been classified on a homogeneous system, to 408. The probabilitythat SNe Ia and SNe II have a different distribution of host-galaxyHubble types is found to be 99.7%. A significant difference is alsofound between the distributions of the host galaxies of SNe Ia and ofSNe Ibc (defined here to include SNe Ib, Ib/c, and Ic). However, nosignificant difference is detected between the frequency distributionsof the host galaxies of SNe II and SNe IIn. This suggests that SNe IInare generally not SNe Ia embedded in circumstellar material that aremasquerading as SNe II. Furthermore, no significant difference is foundbetween the distribution of the Hubble types of the hosts of SNe Ibc andof SNe II. Additionally, SNe II-P and SNe II-L are found to occur amongsimilar stellar populations. The ratio of the number of SNe Ia-pec tonormal SNe Ia appears to be higher in early-type galaxies than it is ingalaxies of later morphological types. This suggests that the ancestorsof SNe Ia-pec may differ systematically in age or composition from theprogenitors of normal SNe Ia. Unexpectedly, five SNe of Types Ib/c, II,and IIn (all of which are thought to have massive progenitors) are foundin host galaxies that are nominally classified as types E and S0.However, in each case the galaxy classification is uncertain, or newlyinspected images show evidence suggesting a later classification. Amongthese five objects, NGC 3720, the host galaxy of SN 2002at, wasapparently misidentified in the Carnegie Atlas of Galaxies.

Near-infrared imaging of ellipticals: surface brightness profiles and photometry
We present near-infrared K-band imaging of a large sample of candidatemerger remnant galaxies and Hickson Compact Group ellipticals. We derivelight profile indices, effective radii and surface brightnesses, as wellas total K-band magnitudes. We find that the light distributions of themerger remnant candidates are consistent with those of `normal'ellipticals, and scatter around a mean profile index of (1/n) = 0.20.Many of our sample galaxies have surface brightness profiles that arenot well described by a de Vaucouleurs law (1/n= 0.25), and we discussthe implications of this on the derived total magnitudes. Comparing thetotal K magnitudes calculated by extrapolating a de Vaucouleurs profileand those derived using a generalized Sérsic form, we find that asignificant bias is introduced if the de Vaucouleurs law is not a gooddescription of the actual light profile.

Metallicity distributions of globular cluster systems in galaxies
We collected a sample of 100 galaxies for which different observers havedetermined colour indices of globular cluster candidates. The sampleincludes representatives of galaxies of various morphological types anddifferent luminosities. Colour indices (in most cases (V-I), but also(B-I) and (C-T_1)) were transformed into metallicities [Fe/H] accordingto a relation by Kissler-Patig (1998). These data were analysed with theKMM software in order to estimate similarity of the distribution withuni- or bimodal Gaussian distribution. We found that 45 of 100 systemshave bimodal metallicity distributions. Mean metallicity of themetal-poor component for these galaxies is < [Fe/H]> = -1.40 +/-0.02, of the metal-rich component < [Fe/H]> = -0.69 +/- 0.03.Dispersions of the distributions are 0.15 and 0.18, respectively.Distribution of unimodal metallicities is rather wide. These data willbe analysed in a subsequent paper in order to find correlations withparameters of galaxies and galactic environment.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Supernova 2002cs in NGC 6702
IAUC 7891 available at Central Bureau for Astronomical Telegrams.

A catalogue and analysis of local galaxy ages and metallicities
We have assembled a catalogue of relative ages, metallicities andabundance ratios for about 150 local galaxies in field, group andcluster environments. The galaxies span morphological types from cD andellipticals, to late-type spirals. Ages and metallicities were estimatedfrom high-quality published spectral line indices using Worthey &Ottaviani (1997) single stellar population evolutionary models. Theidentification of galaxy age as a fourth parameter in the fundamentalplane (Forbes, Ponman & Brown 1998) is confirmed by our largersample of ages. We investigate trends between age and metallicity, andwith other physical parameters of the galaxies, such as ellipticity,luminosity and kinematic anisotropy. We demonstrate the existence of agalaxy age-metallicity relation similar to that seen for local galacticdisc stars, whereby young galaxies have high metallicity, while oldgalaxies span a large range in metallicities. We also investigate theinfluence of environment and morphology on the galaxy age andmetallicity, especially the predictions made by semi-analytichierarchical clustering models (HCM). We confirm that non-clusterellipticals are indeed younger on average than cluster ellipticals aspredicted by the HCM models. However we also find a trend for the moreluminous galaxies to have a higher [Mg/Fe] ratio than the lowerluminosity galaxies, which is opposite to the expectation from HCMmodels.

Supernovae 2002cj, 2002ck, 2002cp, 2002cs
IAUC 7894 available at Central Bureau for Astronomical Telegrams.

The Luminosity Functions of Old and Intermediate-Age Globular Clusters in NGC 3610
The Wide Field Planetary Camera 2 on board the Hubble Space Telescope(HST) has been used to obtain high-resolution images of NGC 3610, adynamically young elliptical galaxy in a group environment. Theseobservations supersede shorter, undithered HST observations in which anintermediate-age population of globular clusters was discovered. The newobservations show the bimodal color distribution of globular clustersmore clearly, with peaks at V-I=0.95 and 1.17. The luminosity functionof the blue metal-poor population of clusters in NGC 3610 turns over,consistent with a Gaussian distribution with a peak MV~-7.0,similar to old globular cluster populations in elliptical galaxies. Thered metal-rich population of clusters has a luminosity function that ismore extended toward both the bright and faint ends, as expected for acluster population of intermediate age. It is well fitted by a power lawφ(L)dL~LαdL, with an exponent ofα=-1.78+/-0.05, or α=-1.90+/-0.07 when corrected forobservational scatter. A Kolmogorov-Smirnov test confirms thesignificant difference between the luminosity functions of the red andblue clusters, with a probability of less than 0.1% that they come fromthe same population. A comparison with the Fall & Zhang clusterdisruption models shows marginal agreement with the observed data whencomparing both the luminosity functions and the mean colordistributions, although there are differences in detail. In particular,there is no clear evidence of the predicted turnover at the faint end,although deeper observations will be required to make a definitive test.A by-product of the analysis is the demonstration that at any givenmetallicity the peak of the luminosity function should remain nearlyconstant from 1.5 to 12 Gyr, since the effect of the disruption of faintclusters is almost perfectly balanced by the fading of the clusters.This may help explain the apparent universality of the peak of theglobular cluster luminosity function. Based on observations with theNASA/ESA Hubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

A synthesis of data from fundamental plane and surface brightness fluctuation surveys
We perform a series of comparisons between distance-independentphotometric and spectroscopic properties used in the surface brightnessfluctuation (SBF) and fundamental plane (FP) methods of early-typegalaxy distance estimation. The data are taken from two recent surveys:the SBF Survey of Galaxy Distances and the Streaming Motions of AbellClusters (SMAC) FP survey. We derive a relation between(V-I)0 colour and Mg2 index using nearly 200galaxies and discuss implications for Galactic extinction estimates andearly-type galaxy stellar populations. We find that the reddenings fromSchlegel et al. for galaxies with E(B-V)>~0.2mag appear to beoverestimated by 5-10 per cent, but we do not find significant evidencefor large-scale dipole errors in the extinction map. In comparison withstellar population models having solar elemental abundance ratios, thegalaxies in our sample are generally too blue at a given Mg2;we ascribe this to the well-known enhancement of the α-elements inluminous early-type galaxies. We confirm a tight relation betweenstellar velocity dispersion σ and the SBF `fluctuation count'parameter N, which is a luminosity-weighted measure of the total numberof stars in a galaxy. The correlation between N and σ is eventighter than that between Mg2 and σ. Finally, we deriveFP photometric parameters for 280 galaxies from the SBF survey data set.Comparisons with external sources allow us to estimate the errors onthese parameters and derive the correction necessary to bring them on tothe SMAC system. The data are used in a forthcoming paper, whichcompares the distances derived from the FP and SBF methods.

Cold gas in elliptical galaxies
We explore the evolution of the cold gas (molecular and neutralhydrogen) of elliptical galaxies and merger remnants ordered into a timesequence on the basis of spectroscopic age estimates. We find that thefraction of cold gas in early merger remnants decreases significantlyfor ~1-2Gyr, but subsequent evolution toward evolved elliptical systemssees very little change. This trend can be attributed to an initial gasdepletion by strong star formation, which subsequently declines toquiescent rates. This explanation is consistent with the merger picturefor the formation of elliptical galaxies. We also explore the relationbetween the HI-to-H2 mass ratio and spectroscopic galaxy age,but find no evidence for a statistically significant trend. Thissuggests little net HI-to-H2 conversion for the systems inthe present sample.

Structural evolution in elliptical galaxies: the age-shape relation
We test the hypothesis that the apparent axial ratio of an ellipticalgalaxy is correlated with the age of its stellar population. We findthat old ellipticals (with estimated ages t>7.5Gyr) are rounder onaverage than younger ellipticals. The statistical significance of thisshape difference is greatest at small radii; a Kolmogorov-Smirnov testcomparing the axial ratios of the two populations at R=Re/16yields a statistical significance greater than 99.96 per cent. Therelation between age and apparent shape is linked to the core/power-lawsurface brightness profile dichotomy. Core ellipticals have olderstellar populations, on average, than power-law ellipticals and arerounder in their inner regions. Our findings are consistent with ascenario in which power-law ellipticals are formed in gas-rich mergers,while core ellipticals form in dissipationless mergers, with coresformed and maintained by the influence of a binary black hole.

The globular cluster system of the young elliptical NGC 6702
We study the globular cluster (GC) system of the dust-lane ellipticalgalaxy NGC 6702, using B-, V- and I-band imaging observations carriedout at the Keck telescope. This galaxy has a spectroscopic age of ~2Gyrsuggesting recent star formation. We find strong evidence for a bimodalGC colour distribution, with the blue peak having a colour similar tothat of the Galactic halo GCs. Assuming that the blue GCs are indeed oldand metal-poor, we estimate an age of 2-5Gyr and supersolar metallicityfor the red GC subpopulation. Despite the large uncertainties, this isin reasonable agreement with the spectroscopic galaxy age. Additionally,we estimate a specific frequency of SN=2.3+/-1.1 for NGC6702. We predict that passive evolution of NGC 6702 will furtherincrease its specific frequency to SN~2.7 within 10Gyr, incloser agreement to that of typical present-day ellipticals. We alsodiscuss evidence that the merger/accretion event that took place a fewGyr ago involved a high gas fraction.

On the dependence of spectroscopic indices of early-type galaxies on age, metallicity and velocity dispersion
We investigate the Mg-σ and -σ relations in asample of 72 early-type galaxies drawn mostly from cluster and groupenvironments using a homogeneous data set which is well calibrated on tothe Lick/IDS system. The small intrinsic scatter in Mg at a givenσ gives upper limits on the spread in age and metallicity of 49and 32 per cent respectively, if the spread is attributed to onequantity only, and if the variations in age and metallicity areuncorrelated. The age/metallicity distribution as inferred from theHβ versus diagnostic diagram reinforces this conclusion,as we find mostly galaxies with large luminosity-weighted ages spanninga range in metallicity. Using Monte Carlo simulations, we show that thegalaxy distribution in the Hβ versus plane cannot bereproduced by a model in which galaxy age is the only parameter drivingthe index-σ relation. In our sample we do not find significantevidence for an anticorrelation of ages and metallicities which wouldkeep the index-σ relations tight while hiding a large spread inage and metallicity. As a result of correlated errors in theage-metallicity plane, a mild age-metallicity anticorrelation cannot becompletely ruled out by the current data. Correcting the line-strengthindices for non-solar abundance ratios, following the recent paper byTrager et al., leads to higher mean metallicity and slightly younger ageestimates while preserving the metallicity sequence. The [Mg/Fe] ratiois mildly correlated with the central velocity dispersion, and rangesfrom [Mg/Fe]=0.05 to 0.3 for galaxies withσ>100kms-1. Under the assumption that there is noage gradient along the index-σ relations, theabundance-ratio-corrected Mg-σ, Fe-σ and Hβ-σrelations give consistent estimates ofΔ[M/H]/Δlogσ~=0.9+/-0.1. The slope of theHβ-σ relation limits a potential age trend as a function ofσ to 2-3Gyr along the sequence.

First Detections of Molecular Gas Associated with the Wolf-Rayet Ring Nebula NGC 3199
This paper presents the first observations of molecular gas associatedwith the Wolf-Rayet ring nebula NGC 3199 around the WR star WR 18. Thisincludes first observations of the molecules HCN, HCO+, CN,and HNC seen in any Wolf-Rayet ring nebula. Our observations immediatelysuggest the presence of high-density molecular gas (>104cm-3) in the nebula with significant amounts of associatedmolecular gas, which is in the form of clumpy ejecta and/or interstellarmaterial. Molecular CO gas was mapped across the optically brightportion of the nebula and out into the diffuse ionized component usingthe 12CO J=1-->0 line. CO gas is not seen within theoptically bright rim of NGC 3199 but adjacent to it. The opticalemission rim therefore appears to mark regions of photodissociation.Velocity components in the CO data are consistent with those seen inhigh-resolution optical spectra of the Hα line but extend beyondthe visible emission. A prior suggestion of the formation of the nebulavia a bow shock appears unlikely since Hipparcos measurements show theproper motion of WR 18 is almost at right angles to the directionrequired for the bow shock model. Instead, line splitting toward thenorth of the nebula suggests that a possible blowout of the Wolf-Rayetwind through surrounding ejecta may be responsible for some of thevelocity features observed. Preliminary estimates of molecularabundances in the nebula seen toward the central star are significantlyhigher than for the interstellar medium and are similar to those inplanetary nebulae, although CN is distinctly underabundant in comparisonto the very high values found in many planetary nebulae. The abundancesfound are consistent with the idea that at least a portion of themolecular material is associated with ejecta from the central star.Based on observations collected at the Swedish-ESO SubmillimetreTelescope (SEST) at the European Southern Observatory, La Silla, Chile.The Swedish-ESO Submillimetre Telescope is operated jointly by theEuropean Southern Observatory (ESO) and the Swedish National Facilityfor Radio Astronomy, Onsala Space Observatory, at Chalmers University ofTechnology.

The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances
We report data for I-band surface brightness fluctuation (SBF)magnitudes, (V-I) colors, and distance moduli for 300 galaxies. Thesurvey contains E, S0, and early-type spiral galaxies in the proportionsof 49:42:9 and is essentially complete for E galaxies to Hubblevelocities of 2000 km s-1, with a substantial sampling of Egalaxies out to 4000 km s-1. The median error in distancemodulus is 0.22 mag. We also present two new results from the survey.(1) We compare the mean peculiar flow velocity (bulk flow) implied byour distances with predictions of typical cold dark matter transferfunctions as a function of scale, and we find very good agreement withcold, dark matter cosmologies if the transfer function scale parameterΓ and the power spectrum normalization σ8 arerelated by σ8Γ-0.5~2+/-0.5. Deriveddirectly from velocities, this result is independent of the distributionof galaxies or models for biasing. This modest bulk flow contradictsreports of large-scale, large-amplitude flows in the ~200 Mpc diametervolume surrounding our survey volume. (2) We present adistance-independent measure of absolute galaxy luminosity, N and showhow it correlates with galaxy properties such as color and velocitydispersion, demonstrating its utility for measuring galaxy distancesthrough large and unknown extinction. Observations in part from theMichigan-Dartmouth-MIT (MDM) Observatory.

The Optical and Near-Infrared Morphologies of Isolated Early-Type Galaxies
To study early-type galaxies in their simplest environments, we haveconstructed a well-defined sample of 30 isolated galaxies. The samplecontains all early-type galaxies listed in the Third Reference Catalogueof Bright Galaxies (RC3) with no other cataloged galaxy with a knownredshift lying within a projected radius of 1h-1100 Mpc and +/-1000 km s-1 (where weuse the recession velocities in the RC3). We have obtained optical andnear-infrared images of 23 of the galaxies and of a comparison sample of13 early-type galaxies in X-ray-detected poor groups of galaxies. Wehave applied the techniques of unsharp-masking, galaxy model division,and color maps to search for morphological features that might provideclues to the evolution of these galaxies. Evidence for dust features isfound in approximately 75% of both the isolated and group galaxies (17of 22 and 9 of 12, respectively). However, shells or tidal features aremuch more prevalent in our isolated sample than in our group sample (9of 22=41% vs. 1 of 12=8%, respectively). The isolation and colors ofthese shell galaxies make it unlikely that tidal interactions orasymmetric star formation are the causes of such features. One modelthat is not ruled out is that mergers produce the shells. If shells anddust are both merger signatures, the absence of shells in groupelliptical galaxies implies that shells (1) form more easily, (2) areyounger, and/or (3) are longer lived in isolated environments.

Strong Balmer Lines in Old Stellar Populations: No Need for Young Ages in Ellipticals?
Comparing models of Simple Stellar Populations (SSPs) with observed linestrengths generally provides a tool for breaking the age-metallicitydegeneracy in elliptical galaxies. Because of the wide range of Balmerline strengths observed, ellipticals have been interpreted as exhibitingan appreciable scatter in age. In this paper, we analyze CompositeStellar Population models with a simple mix of an old metal-rich and anold metal-poor component. We show that these models simultaneouslyproduce strong Balmer lines and strong metallic lines without invoking ayoung population. The key to this result is that our models are based onSSPs that better match the steep increase of Hβ in metal-poorglobular clusters than models in the literature. Hence, the scatter ofHβ observed in cluster and luminous field elliptical galaxies canbe explained by a spread in the metallicity of old stellar populations.We check our model with respect to the so-called G-dwarf problem inellipticals. For a galaxy subsample covering a large range in 1500-Vcolors, we demonstrate that the addition of an old metal-poorsubcomponent does not invalidate other observational constraints likecolors and the flux in the mid-UV.

The Stellar Population Histories of Early-Type Galaxies. II. Controlling Parameters of the Stellar Populations
This paper analyzes single stellar population (SSP)-equivalentparameters for 50 local elliptical galaxies as a function of theirstructural parameters. The galaxy sample is drawn from the high-qualityspectroscopic surveys of González (1993) and Kuntschner (1998).The basic data are central values of SSP-equivalent ages, t,metallicities, [Z/H], and ``enhancement'' ratios, [E/Fe], derived inPaper I, together with global structural parameters including velocitydispersions, radii, surface brightnesses, masses, and luminosities. Thegalaxies fill a two-dimensional plane in the four-dimensional space of[Z/H], logt, logσ, and [E/Fe]. SSP age, t, and velocitydispersion, σ, can be taken as the two independent parameters thatspecify a galaxy's location in this ``hyperplane.'' The hyperplane canbe decomposed into two subrelations: (1) a ``Z-plane,'' in which [Z/H]is a linear function of logσ and logt and (2) a relation between[E/Fe] and σ in which [E/Fe] is larger in high-σ galaxies.Velocity dispersion is the only structural parameter that is found tomodulate the stellar populations; adding other structural variables suchas Ie or re does not predict [Z/H] or [E/Fe] moreaccurately. Cluster and field ellipticals follow the same hyperplane,but their (σ,t) distributions within it differ. Most Fornax andVirgo cluster galaxies are old, with a only a small sprinkling ofgalaxies to younger ages. The field ellipticals span a larger range inSSP age, with a tendency for lower σ galaxies to be younger. Thepresent sample thus suggests that the distribution of local ellipticalsin the (σ,t) plane may depend on environment. Since the(σ,t) distribution affects all two-dimensional projectionsinvolving SSP parameters, many of the familiar scaling laws attributedto ellipticals may also depend on environment. Some evidence for this isseen in the current sample. For example, only Fornax ellipticals showthe classic mass-metallicity relation, whereas other subsamples do not.The tight Mg-σ relations of these ellipticals can be understood astwo-dimensional projections of the metallicity hyperplane showing itedge-on. At fixed σ, young age tends to be offset by high [Z/H],preserving Mg nearly constant. The tightness of the Mg-σ relationsdoes not necessarily imply a narrow range of ages at fixed σ.Although SSP parameters are heavily weighted by young stars, modelingthem still places tight constraints on the total star formation historyof elliptical galaxies. The relation between [E/Fe] and σ isconsistent with a higher effective yield of Type II SNe elements athigher σ. This might occur if the IMF is enhanced in massive starsat high σ, or if more SNe II-enriched gas is retained by deepergalactic potential wells. Either way, modulating Type II yields versusσ seems to fit the data better than modulating Type Ia yields. TheZ-plane is harder to explain and may be a powerful clue to starformation in elliptical galaxies if it proves to be general. Presentdata favor a ``frosting'' model in which low apparent SSP ages areproduced by adding a small frosting of younger stars to an older``base'' population (assuming no change in σ). If the frostingabundances are close to or slightly greater than the base population,simple two-component models run along lines of constant σ in theZ-plane, as required. This favors star formation from well-mixedpre-enriched gas rather than unmixed low-metallicity gas from anaccreted object.

The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters
This paper commences a series of investigations into the stellarpopulations of local elliptical galaxies as determined from theirintegrated spectra. The goal of the series is to determine the starformation and chemical evolution histories of present-day ellipticalgalaxies. The primary galaxy sample analyzed is that of González,which consists of 39 elliptical galaxies drawn primarily from the localfield and nearby groups, plus the bulge of Messier 31. Single-burststellar population (SSP)-equivalent ages, metallicities, and abundanceratios are derived from Hβ, Mg b, and line strengthsusing an extension of the Worthey models that incorporates nonsolarline-strength ``response functions'' by Tripicco & Bell. Thesefunctions account for changes in the Lick/IDS indices caused by nonsolarabundance ratios, allowing us to correct the Worthey models for theenhancements of Mg and other α-like elements relative to theFe-peak elements. SSP-equivalent ages of the González ellipticalgalaxies are found to vary widely, 1.5 Gyr<~t<~18 Gyr, whilemetallicities [Z/H] and enhancement ratios [E/Fe] are strongly peakedaround <[Z/H]>=+0.26 and <[E/Fe]>=+0.20 (in an aperture ofradius re/8). The enhancement ratios [E/Fe] are milder thanprevious estimates because of the application of nonsolar abundancecorrections to both Mg b and for the first time. While [E/Fe]is usually greater than zero, it is not the ``E'' elements that areactually enhanced but rather the Fe-peak elements that are depressed;this serves not only to weaken but also to strengthen Mg b,accounting for the overall generally mild enhancements. Based on indexstrengths from the Lick/IDS galaxy library (Trager et al.), C is notdepressed with Fe but rather seems to be on a par with other elementssuch as Mg in the E group. Gradients in stellar populations withingalaxies are found to be mild, with SSP-equivalent age increasing by25%, metallicity decreasing by <[Z/H]>=0.20 dex, and [E/Fe]remaining nearly constant out to an aperture of radius re/2for nearly all systems. Our ages have an overall zero-point uncertaintyof at least ~25% because of uncertainties in the stellar evolutionprescription, the oxygen abundance, the effect of [E/Fe]≠0 on theisochrones, and other unknowns. However, the relative age rankings ofstellar populations should be largely unaffected by these errors. Inparticular, the large spread in ages appears to be real and cannot beexplained by contamination of Hβ by blue stragglers orhot horizontal-branch stars, or by fill-in of Hβ byemission. Correlations between these derived SSP-equivalent parametersand other galaxy observables will be discussed in future papers.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Lyra
Right ascension:18h46m57.80s
Declination:+45°42'22.0"
Aparent dimensions:1.66′ × 1.445′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 6702
HYPERLEDA-IPGC 62395

→ Request more catalogs and designations from VizieR