Contents
Images
Upload your image
DSS Images Other Images
Related articles
Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.
| Vertical distribution of Galactic disk stars. I. Kinematics and metallicity Nearly 400 Tycho-2 stars have been observed in a 720 square degree fieldin the direction of the North Galactic Pole with the high resolutionechelle spectrograph ELODIE. Absolute magnitudes, effectivetemperatures, gravities and metallicities have been estimated, as wellas distances and 3D velocities. Most of these stars are clump giants andspan typical distances from 200 pc to 800 pc to the galactic mid-plane.This new sample, free of any kinematical and metallicity bias, is usedto investigate the vertical distribution of disk stars. The old thindisk and thick disk populations are deconvolved from thevelocity-metallicity distribution of the sample and their parameters aredetermined. The thick disk is found to have a moderate rotational lag of-51 +/- 5 km s-1 with respect to the Sun with velocityellipsoid (sigmaU , sigmaV , sigmaW )=(63+/- 6, 39+/- 4, 39+/- 4) km s-1, mean metallicity of[Fe/H] = -0.48 +/- 0.05 and a high local normalization of 15 +/- 7%.Combining this NGP sample with a local sample of giant stars from theHipparcos catalogue, the orientation of the velocity ellipsoid isinvestigated as a function of distance to the plane and metallicity. Wefind no vertex deviation for old stars, consistent with an axisymmetricGalaxy. Paper II is devoted to the dynamical analysis of the sample,puting new constraints on the vertical force perpendicular to thegalactic plane and on the total mass density in the galactic plane.Based on observations made at the Observatoire de Haute Provence(France). Data are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/141
| The peak brightness of SN 1937C in IC 4182 and the Hubble constant The light curve of the Type Ia supernova SN 1937C (in IC 4182) isimportant because Sandage et al. have measured a distance to the hostgalaxy by means of Cepheid variables and thus have derived the Hubbleconstant. However, the peak brightness of SN 1937C has only been derivedwith the relatively poor original comparison star brightnesses andwithout regard to a large body of data in the literature. In this paper,I will correct these and other procedural difficulties. I find that thelate time photographic light curve appears to have a broken exponentialdecay with equivalent half-lives of 46 and 58 days with the break near300 days after maximum. I also find that the peak B-magnitude was 8.71+/- 0.14 on JD 2428770.0 +/- 1.0 at which time the B-V was -0.03 +/-0.13. With these improved peak brightnesses, the distance modulus ofSandage et al., and peak absolute magnitudes in the center of the rangeof modern estimates, I derive the Hubble constant to be 50 km/s Mpc.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Jagdhunde |
Right ascension: | 13h04m21.50s |
Declination: | +38°26'00.0" |
Apparent magnitude: | 9.144 |
Proper motion RA: | -16.3 |
Proper motion Dec: | -8.3 |
B-T magnitude: | 10.498 |
V-T magnitude: | 9.256 |
Catalogs and designations:
|