Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 5234-2077-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Cataclysmic variables below the period gap: mass determinations of 14 eclipsing systems
We present high-speed, three-colour photometry of the eclipsingcataclysmic variables CTCV J1300-3052, CTCV J2354-4700 and SDSSJ115207.00+404947.8. These systems have orbital periods of 128.07, 94.39and 97.52 min, respectively, placing all three systems below theobserved 'period gap' for cataclysmic variables. For each system wedetermine the system parameters by fitting a parametrized model to theobserved eclipse light curve by ?2 minimization.We also present an updated analysis of all other eclipsing systemspreviously analysed by our group. The updated analysis utilizes Markovchain Monte Carlo techniques which enable us to arrive confidently atthe best fits for each system with more robust determinations of ourerrors. A new bright-spot model is also adopted, that allows bettermodelling of bright-spot dominated systems. In addition, we correct abug in the old code which resulted in the white dwarf radius beingunderestimated, and consequently both the white dwarf and donor massbeing overestimated. New donor masses are generally between 1? and2? of those originally published, with the exception of SDSS 1502(-2.9?, ?Mr=-0.012 M&sun;) and DV UMa(+6.1?, ?Mr=+0.039 M&sun;). We notethat the donor mass of SDSS 1501 has been revised upwards by 0.024M&sun; (+1.9?). This system was previously identifiedas having evolved past the minimum orbital period for cataclysmicvariables, but the new mass determination suggests otherwise. Our newanalysis confirms that SDSS 1035 and SDSS 1433 have evolved past theperiod minimum for cataclysmic variables, corroborating our earlierstudies.We find that the radii of donor stars are oversized when compared totheoretical models, by approximately 10 per cent. We show that this canbe explained by invoking either enhanced angular momentum loss, or bytaking into account the effects of star spots. We are unable to favourone cause over the other, as we lack enough precise mass determinationsfor systems with orbital periods between 100 and 130 min, whereevolutionary tracks begin to diverge significantly.We also find a strong tendency towards high white dwarf masses withinour sample, and no evidence for any He-core white dwarfs. The dominanceof high-mass white dwarfs implies that erosion of the white dwarf duringthe nova outburst must be negligible, or that not all of the massaccreted is ejected during nova cycles, resulting in the white dwarfgrowing in mass.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

The PASTEL catalogue of stellar parameters
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

Mapping the Local Galactic Halo. I. Optical Photometry of Cool Subdwarf Candidates
Optical (BVRI) photometric measurements of a sample of 564 candidatecool subdwarfs in the nearby halo are presented. The stars generallyspan the color range 0.4<(B-V)<1.8 hence, the sample is composedof early F- through early M-type stars on the subdwarf sequence. Thesample is selected from the revised NLTT catalog of Gould and Salim andSalim and Gould via a reduced proper motion diagram. The photometry isprecise and accurate; in particular, for stars with 9

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Absolute magnitudes for late-type dwarf stars for Sloan photometry
We present a new formula for absolute magnitude determination forlate-type dwarf stars as a function of (g-r) and (r-i) for Sloanphotometry. The absolute magnitudes estimated by this approach arebrighter than those estimated by colour-magnitude diagrams, and theyreduce the luminosity function rather close to the luminosity functionof Hipparcos.

A CCD imaging search for wide metal-poor binaries
We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between ˜32 and ˜57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

The u'g'r'i'z' Standard-Star System
We present the 158 standard stars that define the u'g'r'i'z' photometricsystem. These stars form the basis for the photometric calibration ofthe Sloan Digital Sky Survey. The defining instrument system andfilters, the observing process, the reduction techniques, and thesoftware used to create the stellar network are all described. Webriefly discuss the history of the star selection process, thederivation of a set of transformation equations for theUBVRCIC system, and plans for future work.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Sodium in the Sun and in metal-poor stars
Systematic effects in the statistical equilibrium of sodium in coolmetal-poor stars are analyzed using full NLTE line formation. Todetermine the important influence of collision processes and of theatomic model, NLTE effects of neutral sodium are first evaluated in thesolar photosphere where the statistical equilibrium of Na I can befollowed by examination of a relatively large number of linetransitions. In agreement with previous analyses it is found that evenvery simple atomic models are sufficient to describe the most importantinteractions. In the solar atmosphere the inner cores of the lines aremost affected by deviations from LTE, but the corresponding abundancecorrections due to NLTE populations are small. The influence ofcollisional interactions with electrons and hydrogen atoms is evaluatedby comparison of the solar spectrum with very precise fits to the Na Iline cores. The profile analysis depends sensitively on the appropriatechoice of velocity amplitudes and its variation with depth. Theresulting solar sodium abundance is obtained with small scatter, logvarepsilon_Na ,sun = 6.30 +/- 0.03. In metal-poor stars NLTE effects aremore pronounced since the statistical equilibrium is dominated bycollisions in which at least the electronic component is substantiallyreduced. The resulting influence on the determination of Na abundancesis in a direction opposite to that found previously for Al. Starsdetermined in LTE analyses to have a solar [Na/Fe] ratio reveal a lower[Na/Fe] when NLTE line formation is taken into account. As foraluminium, the extremely metal-poor and the hotter subdwarfs areaffected most strongly by Na abundance corrections reaching -0.5 dex forthe D lines. The resulting Galactic evolution of the Na/Fe and Na/Mgratios is not adequately described by current chemical evolutionscenarios. Based on observations collected at the European SouthernObservatory, La Silla, Chile, and at the German-Spanish AstronomicalCenter, Calar Alto, Spain

The Abundance of CN. Calcium and Heavy Elements in High Velocity Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114..825E&db_key=AST

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Spectroscopic analyses of metal-poor stars. II. The evolutionary stage of subdwarfs.
Models of post-main sequence stellar evolution of VandenBerg & Bell(???) have been applied to determine spectroscopic masses and distancesfor metal-poor stars. Careful consideration of the most important errorsources published in more recent papers such as VandenBerg (???) for thefirst time allow us to draw firm statistical conclusions. It is shownthat the evolutionary calculations qualitatively fit to the observedstellar parameters whereas quantitatively they predict too high ages formetal-poor stars. As an important result we confirm that evolutionarysequences need to be calibrated with respect to their metal abundance inorder to use their absolute predictions of temperature and luminosity.It turns out that this can be achieved by a simple shift of theevolutionary tracks and isochrones in effective temperature with values{DELTA}log T_eff_<~0.03 which accounts for possible changes of themixing-length and the O/Fe ratio with metallicity. The stellarluminosities and surface gravities obtained from evolutionary models aremuch more reliable than their effective temperatures. Therefore weconclude that the accuracy of the corresponding spectroscopic stellargravities is systematically affected by deviations from LTE, inparticular along the subgiant sequence where systematic errors less than{DELTA}log g =~0.3 must be ascribed to the non-LTE ionizationequilibrium of Fe II/Fe I. In our spectroscopic analyses the strongdependence between surface gravity and abundances determined from Fe Ilines restricts the accuracy of Fe abundances in subgiants to 0.1 dex atbest. The most remarkable result of our evolutionary and kinematicinvestigations of halo stars refers to the large fraction of slightlyevolved subgiants among the so-called subdwarfs. Since conventionalphotometric approaches often assume that the great majority ofmetal-poor stars are dwarfs this results in distances that aresystematically too low for their samples. Consequently, significantdifferences are found when comparing evolutionary and kinematicparameters obtained from either photometric or spectroscopic data. Wedemonstrate this by comparing the space velocities of the stars. Itappears that stars with particularly high space velocities derived fromspectroscopic distances show very often much lower velocities based ontheir main sequence parallaxes. We find that results refering to mainsequence parallaxes are doubtful and can be used only with greatestcare. An advantageous side-effect of the application of spectroscopicdata to evolutionary calculations is the possibility to identify binarysystems that are either standing out from the Toomre diagram with theirunusually high space velocities, or from a log g - log T_eff_ diagramwith apparently contradictory luminosities.

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

The general catalogue of trigonometric [stellar] paralaxes
Not Available

Spectroscopic analyses of metal-poor stars. 1: Basic data and stellar parameters
Accurate stellar parameters have been obtained from the analyses of morethan thousand spectra of 115 metal-poor dwarfs and subgiants with visualmagnitudes brighter than V approximately equal to 12. The stellar samplewas selected mainly by high proper motion, with additional restrictionsfrom B-V colors and U-B excesses. The effective temperatures cover arange from 5000 to 6500 K while abundances are found between (M/H) =-0.1 and -0.3 dex. Based on homogeneous ODF blanketed model atmospheresin local thermodynamic equilibrium (LTE) and working differentially withrespect to the Sun we derive a consistent set of stellar parameters,effective temperature, surface gravity, metal abundance andmicroturbulence velocity. Individual profile synthesis is applied to anumber of spectral lines for each star, which has led as a rule toaccuracies in Teff of better than 100 K, in log g of betterthan 0.15, and in (Fe/H) of better than 0.1 dex. Because of theconsistent treatment with only one type of model atmosphere, this sampleprovides an oppurtunity to examine the individual parametersstatistically and investigate in detail their relation to the formationand evolution of the Galaxy. One aspect of this analysis is a generalshift to higher iron abundances for the most metal-poor stars. Alongwith the recently preferred meteoritic solar iron abundance andeffective temperatures from conistent Balmer line profile fits that tendto be 100-200 K hotter than found from photometric calibrations,discrepancies of up to 0.5 dex in (Fe/H) can be explained in comparisonwith other abundance analyses. The most important results refer to theevolutionary status of the bona fide subdwarf sample. Irrespective ofthe different effective temperatures found here, there exists a severeproblem when comparing post main sequence evolutionary models of coolstars with our observed parameters. Even more interesting is the fact,demonstrated by the results of a consistent analysis of the ironionization equilibrium, that roughly half of the subdwarfs aresubgiants, some of them having nearly reached the bottom of the giantbranch.

Balmer lines in cool dwarf stars II. Effective temperatures and calibration of colour indices
Effective temperatures obtained from synthesis of the extended profilewings of the first four Balmer lines are presented for more than 100dwarfs and subgiants of different metal abundances and surface gravitiesin the temperature range from 5000 to 6500 K. Line formation is based onhomogeneous ODF blanketed model atmospheres in LTE. The resultingtemperatures of the more metal-rich stars differ systematically fromthose determined by reference to synthetic broad- or intermediate-bandcolours such as B-V , b-y , R-I or V-K . While the Balmer linetemperatures give room to only very small individual errors and resultin a convincingly small mean error for all four lines, the scatteragainst temperatures determined from broad-band colours is by faroutside the internal errors claimed in recent applications. This may beattributed to either (a) observational errors, (b) dependence on therelative mixture of metal abundances, (c) unknown line blocking in mostof the visible and near-infrared spectrum or (d) the inhomogeneity foundin the granular patterns of stellar surfaces. Our results suggest thatbroad-band colours are insufficient individual temperature indicators,reliable only in a statistical sense.

Subdwarf Studies. III. The Halo Metallicity Distribution
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991AJ....101.1865R&db_key=AST

Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution
Stars previously identified as having UV excesses are observed at 1-Aresolution in the Ca II K-line region. Comparisons of these data withother samples and with Monte Carlo simulations involving a singlecomponent halo have yielded estimates of halo velocity dispersions androtation velocity, corrected for the kinematic biases in the sample. Itis suggested that the data are not consistent with a model in which thehalo formed from star formation in a dissipating, collapsing cloud; theyare, however, reconcilable with the formation of the halo stars bynumerous, independently evolving gas clouds. The metallicitydistribution of a sample of 372 kinematically selected halo stars isthen constructed, with a view to selection effects in the data. Goodagreement is noted between the globular cluster metallicity distributionand a stochastic model with a mean of 10 enrichments/fragment.

Subdwarf studies. I - UBVRI photometry of NLTT stars
UBVRI photometry is presented for a sample of 1656 southern stars,including 1211 that were previously unmeasured, drown from the NLTTproper-motion catalog. The catalog is shown to be a rich source ofsubdwarfs. The normalized ultraviolet excess delta (U - B)0.6,photometric parallax, and interstellar reddening are calculated for eachstar when possible. Photometric parallaxes are compared withtrigonometric parallaxes from the literature. It is found that theformer do not have systematic errors greater than about 25 percent. Inagreement with other studies, the bluest subdwarfs are found at B - V =0.35. The selection of the program stars on the basis of large reducedproper motions restricted subgiant contamination of the sample to about5 percent and increased the discovery fraction of halo stars relative todisk stars. The claim is made here that the sample can be used toinvestigate the abundance distribution of the halo. The sample includesstars with ultraviolet excesses characteristic of disk abundances butwith velocities up to 150 km/s. These are believed to be stars that,quite expectedly, reside in the high-velocity tail of the disk velocitydistribution.

Ubvy-beta photometry of high-velocity and metal-poor stars. III - Metallicities and ages of the halo stars
The interstellar color excesses, E(b-y) and the metallicities, Fe/Habundance ratio, are determined for the 711 high-velocity and metal-poorstars in the catalog of ubvy-beta photometry compiled by Schuster andNissen (1988). It is found that 220 of these are halo stars and that 15percent of these halo stars have colors that are significantly affectedby interstellar reddening. A minimum age of 18-20 Gyr is determined forthe halo stars. The results suggest that a pressure-supported slowuniform collapse controlled the formation and evolution of the Galaxy.

Four-color UVBY and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations
A catalog of four-color uvby and H-beta photometry for 711 high-velocityand metal-poor stars is given. The selection of the stars and theobserving and reduction techniques used to obtain these data arediscussed. The photometry has been transformed closely onto the standarduvby-beta system. The errors of the data have been estimated using bothinternal and external comparisons. The data are uniform over the sky;that is, there are no significant north-south differences. For the largemajority of stars the mean errors of V, m1, c1, and beta are less than +or - 0.008 mag, and the error of b-y is less than + or - 0.005 mag.Values of V, b-y and beta and rough photometric classifications aregiven for 63 red and/or evolved stars that fall outside the range of thephotometric transformations.

Carbon and nitrogen abundances in metal-poor dwarfs of the solar neighborhood
Intermediate-resolution C, N, and Fe abundance spectra for 83 subdwarfsin the lowest metallicity range (-1.5 to -3.2), obtained with the LickObservatory 3.1-m Shane telescope, are analyzed. The effects ofsubgiants and binaries on the sample are examined. The relation between(B-V) and (V-K) and effective temperature is studied. C/Fe, N/Fe, andFe/H abundances were determined using the model-atmosphere technique ofspectrum synthesis. The derived abundance values are compared with datafrom previous investigations. It is observed that there is goodcorrelation between the Fe/H abundance values derived from theintermediate-resolution spectra and those based on high-resolutionspectra; C/Fe abundance values are constant; and there is an upturn inthe C/Fe abundance values at the very lowest metallicities.

Luminosities, abundances, and motions of stars brighter than visual magnitude 15.1 and annual proper motions larger than one-half arcsecond
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987AJ.....93..393E&db_key=AST

New subdwarfs. VI - Kinematics of 1125 high-proper-motion stars and the collapse of the Galaxy
The UVW velocity components, planar eccentricities, and angular momentaof 878 high-proper-motion stars are determined using the radial-velocitydata of Fouts and Sandage (1986) and compared with chemical abundancesand photometric parallaxes from the UBV photometry of Sandage and Kowal(1986). The results are presented, along with published data on 247additional stars, in extensive tables and graphs and characterized indetail. Two approximately equal components are differentiated: alow-velocity component identified as part of the thick disk described byGilmore and Reid (1983) and a high-velocity halo component. The data arefound to support a model of Galactic collapse (with concomitant spinupand progressive chemical enrichment) which includes a rotating bulge(the thick disk) with kinematic and metallicity properties between thoseof the old thin disk and the halo.

Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less
A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Υδροχόος
Right ascension:22h44m56.32s
Declination:-02°21'12.8"
Apparent magnitude:11.591
Proper motion RA:738.3
Proper motion Dec:-243.1
B-T magnitude:12.186
V-T magnitude:11.641

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 5234-2077-1
USNO-A2.0USNO-A2 0825-19766012
HIPHIP 112310

→ Request more catalogs and designations from VizieR