Contenidos
Imágenes
Subir su imagen
DSS Images Other Images
Artículos relacionados
Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| Chromospheric Activity and Jitter Measurements for 2630 Stars on the California Planet Search We present time series measurements of chromospheric activity for morethan 2600 main-sequence and subgiant stars on the California PlanetSearch (CPS) program with spectral types ranging from about F5V to M4Vfor main-sequence stars and from G0IV to about K5IV for subgiants. Thelarge data set of more than 44,000 spectra allows us to identify anempirical baseline floor for chromospheric activity as a function ofcolor and height above the main sequence. We define ?S as anexcess in emission in the Ca II H and K lines above the baselineactivity floor and define radial velocity jitter as a function of?S and B - V for main-sequence and subgiant stars. Although thejitter for any individual star can always exceed the baseline level, wefind that K dwarfs have the lowest level of jitter. The lack ofcorrelation between observed jitter and chromospheric activity in Kdwarfs suggests that the observed jitter is dominated by instrumental oranalysis errors and not astrophysical noise sources. Thus, given thelong-term precision for the CPS program, radial velocities are notcorrelated with astrophysical noise for chromospherically quiet K dwarfstars, making these stars particularly well suited for the highestprecision Doppler surveys. Chromospherically quiet F and G dwarfs andsubgiants exhibit higher baseline levels of astrophysical jitter than Kdwarfs. Despite the fact that the rms in Doppler velocities iscorrelated with the mean chromospheric activity, it is rare to seeone-to-one correlations between the individual time series activity andDoppler measurements, diminishing the prospects for correctingactivity-induced velocity variations in F and G dwarfs.Based on observations obtained at the Keck Observatory and LickObservatory, which are operated by the University of California.
| Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood Debris discs - analogous to the asteroid and Kuiper-Edgeworth belts inthe Solar system - have so far mostly been identified and studied inthermal emission shortward of 100?m. The Herschel space observatoryand the Submillimetre Common-User Bolometer Array-2 (SCUBA-2) camera onthe James Clerk Maxwell Telescope will allow efficient photometricsurveying at 70 to 850?m, which allows for the detection of coolerdiscs not yet discovered, and the measurement of disc masses andtemperatures when combined with shorter wavelength photometry. TheSCUBA-2 Unbiased Nearby Stars survey (SUNS) and the Disc Emission via aBias-free Reconnaissance in the Infrared/Submillimetre (DEBRIS) HerschelOpen Time Key Project are complementary legacy surveys observing samplesof ~500 nearby stellar systems. To maximize the legacy value of thesesurveys, great care has gone into the target selection process. Thispaper describes the target selection process and presents the targetlists of these two surveys.
| Rotation and Magnetic Activity in a Sample of M-Dwarfs We have analyzed the rotational broadening and chromospheric activity ina sample of 123 M-dwarfs, using spectra taken at the W.M. KeckObservatory as part of the California Planet Search program. We findthat only seven of these stars are rotating more rapidly than ourdetection threshold of v sin i ? 2.5 km s-1.Rotation appears to be more common in stars later than M3 than in theM0-M2.5 mass range: we estimate that less than 10% of early-M stars aredetectably rotating, whereas roughly a third of those later than M4 showsigns of rotation. These findings lend support to the view thatrotational braking becomes less effective in fully convective stars. Bymeasuring the equivalent widths of the Ca II H and K lines for the starsin our sample, and converting these to approximate L Ca/Lbol measurements, we also provide constraints on theconnection between rotation and magnetic activity. Measurable rotationis a sufficient, but not necessary condition for activity in our sample:all the detectable rotators show strong Ca II emission, but so too do asmall number of non-rotating stars, which we presume may lie at highinclination angles relative to our line of sight. Our data areconsistent with a "saturation-type" rotation-activity relationship, withactivity roughly independent of rotation above a threshold velocity ofless than 6 km s-1. We also find weak evidence for a"gap" in L Ca/L bol between a highly activepopulation of stars, which typically are detected as rotators, andanother much less active group.
| Rotational Velocities for M Dwarfs We present spectroscopic rotation velocities (v sin i) for 56 M dwarfstars using high-resolution Hobby-Eberly Telescope High ResolutionSpectrograph red spectroscopy. In addition, we have also determinedphotometric effective temperatures, masses, and metallicities ([Fe/H])for some stars observed here and in the literature where we couldacquire accurate parallax measurements and relevant photometry. We haveincreased the number of known v sin i values for mid M stars by around80% and can confirm a weakly increasing rotation velocity withdecreasing effective temperature. Our sample of v sin is peak at lowvelocities (~3 km s-1). We find a change in therotational velocity distribution between early M and late M stars, whichis likely due to the changing field topology between partially and fullyconvective stars. There is also a possible further change in therotational distribution toward the late M dwarfs where dust begins toplay a role in the stellar atmospheres. We also link v sin i to age andshow how it can be used to provide mid-M star age limits. When allliterature velocities for M dwarfs are added to our sample, there are198 with v sin i <= 10 km s-1 and 124 in themid-to-late M star regime (M3.0-M9.5) where measuring precision opticalradial velocities is difficult. In addition, we also search the spectrafor any significant Hα emission or absorption. Forty three percentwere found to exhibit such emission and could represent young, activeobjects with high levels of radial-velocity noise. We acquired twoepochs of spectra for the star GJ1253 spread by almost one month and theHα profile changed from showing no clear signs of emission, toexhibiting a clear emission peak. Four stars in our sample appear to below-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129and Gl802 exhibiting double Hα emission features. The tablespresented here will aid any future M star planet search target selectionto extract stars with low v sin i.Based on observations obtained with the Hobby-Eberly Telescope, which isa joint project of the University of Texas at Austin, the PennsylvaniaState University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen.
| Radio Interferometric Planet Search. I. First Constraints On Planetary Companions For Nearby, Low-Mass Stars From Radio Astrometry Radio astrometry of nearby, low-mass stars has the potential to be apowerful tool for the discovery and characterization of planetarycompanions. We present a Very Large Array survey of 172 active M dwarfsat distances of less than 10 pc. Twenty-nine stars were detectedwith flux densities greater than 100 μJy. We observed seven ofthese stars with the Very Long Baseline Array at milliarcsecondresolution in three separate epochs. With a detection threshold of500 μJy in images of sensitivity 1σ ~ 100 μJy, wedetected three stars three times (GJ 65B, GJ 896A, GJ 4247), one startwice (GJ 285), and one star once (GJ 803). Two stars were undetected(GJ 412B and GJ 1224). For the four stars detected in multiple epochs,residuals from the optically determined apparent motions have anroot-mean-square deviation of ~0.2 milliarcseconds, consistent withstatistical noise limits. Combined with previous optical astrometry,these residuals provide acceleration upper limits that allow us toexclude planetary companions more massive than 3-6 M Jup at adistance of ~1 AU with a 99% confidence level.
| Nondetection of the Neptune-Mass Planet Reported Around GJ 176 Endl et al. reported a Neptune-mass planet in a 10.24 day orbit aroundGJ 176. This planet has raised interest because of its low mass(Msin i = 24 M Earth), correspondingly smallvelocity amplitude(K = 11.7 m s-1), and becauseGJ 176 is an M star. We report 41 precise Doppler measurements ofGJ 176 obtained with the Keck-HIRES spectrometer over a 10 yeartime span. These measurements show no evidence of the 10.24 daycompanion, at a threshold of 4 m s-1, afactor of 3 less than the amplitude reported by Endl et al. The Keckvelocities are consistent with instrumental noise and stellar jitter.The existence of the planet is thus called into question.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.
| An extremely wide and very low-mass pair with common proper motion. Is it representative of a nearby halo stream? Aims. We describe the discovery of an extremely wide pair of low-massstars with a common large proper motion and discuss their possiblemembership in a Galactic halo stream crossing the Solar neighbourhood. Methods: In a high proper motion survey of the southern sky we usedmulti-epoch positions and photometry from the SuperCOSMOS Sky Surveys.New nearby ultracool dwarf and subdwarf candidates were selected amongthe faint and red high proper motion objects, and subsequently confirmedby low-resolution classification spectroscopy. The resultingspectroscopic distance estimates, approximate radial velocitymeasurements and improved proper motions involving additional epochsfrom the Two Micron All Sky Survey and from the DEep Near-InfraredSurvey were used to compute Galactic space velocities. Results: Thelate-type (M 7) dwarf SSSPM J2003-4433 and the ultracool subdwarf SSSPMJ1930-4311 (sdM 7) sharing the same very large proper motion of about860 mas/yr were found in the same sky region with an angular separationof about 6°. From the comparison with other high proper motioncatalogues we have estimated the probability of a chance alignment ofthe two new large proper motions to be less than 0.3%. From theindividually estimated spectroscopic distances of about38+10-7 pc and 72+21-16 pc,respectively for the M 7 dwarf and the sdM 7 subdwarf, and in view ofthe accurate agreement in their large proper motions we assume a commondistance of about 50 pc and a projected physical separation of about 5pc. The mean heliocentric space velocity of the pair (U,V,W)=(-232,-170, +74) km s-1, based on the correctness of thepreliminary radial velocity measurement for only one of the componentsand on the assumption of a common distance and velocity vector, istypical of the Galactic halo population. Conclusions: The largeseparation and the different metallicities of dwarfs and subdwarfs makea common formation scenario as a wide binary (later disrupted)improbable, although there remains some uncertainty in the spectroscopicclassification scheme of ultracool dwarfs/subdwarfs so that a dissolvedbinary origin cannot be fully ruled out yet. It seems more likely thatthis wide pair is part of an old halo stream. Higher-resolutionspectroscopic observations are needed to measure accurate radialvelocities of both components. Further, we suggest to check the M 7dwarf for an unresolved binary status, which would explain its shorterspectroscopic distance estimate, and to place both objects on atrigonometric parallax program.Based onobservations with the ESO 3.6 m/EFOSC2 at the European SouthernObservatory, La Silla (ESO program 70.C-0568).
| Characterizing the Near-UV Environment of M Dwarfs We report the results of our Hubble Space Telescope (HST) snapshotsurvey with the ACS HRC PR200L prism, designed to measure the near-UVemission in a sample of nearby M dwarfs. Thirty-three stars wereobserved, spanning the mass range from 0.1 to 0.6 solar masses(Teff~2200-4000 K) where the UV energy distributions varywidely between active and inactive stars. These observations providemuch needed constraints on models of the habitability zone and theatmospheres of possible terrestrial planets orbiting M dwarf hosts andwill be useful in refining the target selection for future spacemissions such as Terrestrial Planet Finder (TPF). We compare our datawith a new generation of M dwarf atmospheric models and discuss theirimplications for the chromospheric energy budget. These NUV data willalso be valuable in conjunction with existing optical, FUV, and X-raydata to explore unanswered questions regarding the dynamo generation andmagnetic heating in low-mass stars.
| The effect of activity on stellar temperatures and radii Context: Recent analyses of low-mass eclipsing binary stars haveunveiled a significant disagreement between the observations andpredictions of stellar structure models. Results show that theoreticalmodels underestimate the radii and overestimate the effectivetemperatures of low-mass stars but yield luminosities that accord withobservations. A hypothesis based upon the effects of stellar activitywas put forward to explain the discrepancies. Aims: In this paper westudy the existence of the same trend in single active stars and providea consistent scenario to explain systematic differences between activeand inactive stars in the H-R diagram reported earlier. Methods: Theanalysis is done using single field stars of spectral types late-K and Mand computing their bolometric magnitudes and temperatures throughinfrared colours and spectral indices. The properties of the stars insamples of active and inactive stars are compared statistically toreveal systematic differences. Results: After accounting for a numberof possible bias effects, active stars are shown to be cooler thaninactive stars of similar luminosity therefore implying a larger radiusas well, in proportions that are in excellent agreement with those foundfrom eclipsing binaries. Conclusions: The present results generalisethe existence of strong radius and temperature dependences on stellaractivity to the entire population of low-mass stars, regardless of theirmembership in close binary systems.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/478/507
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Ca II H and K Chromospheric Emission Lines in Late-K and M Dwarfs We have measured the profiles of the Ca II H and K chromosphericemission lines in 147 main-sequence stars of spectral type M5-K7 (masses0.30-0.55 Msolar) using multiple high-resolution spectraobtained during 6 years with the HIRES spectrometer on the Keck Itelescope. Remarkably, the average FWHM, equivalent widths, and lineluminosities of Ca II H and K increase by a factor of 3 with increasingstellar mass over this small range of stellar masses. We fit the Ca II Hand K lines with a double-Gaussian model to represent both thechromospheric emission and the non-LTE central absorption. Most of thesample stars display a central absorption that is typically redshiftedby ~0.1 km s-1 relative to the emission. This implies thatthe higher level, lower density chromospheric material has a smalleroutward velocity (or higher inward velocity) by 0.1 km s-1than the lower level material in the chromosphere, but the nature ofthis velocity gradient remains unknown. The FWHM of the Ca II H and Kemission lines increase with stellar luminosity, reminiscent of theWilson-Bappu effect in FGK-type stars. Both the equivalent widths andFWHM exhibit modest temporal variability in individual stars. At a givenvalue of MV, stars exhibit a spread in both the equivalentwidth and FWHM of Ca II H and K, due both to a spread in fundamentalstellar parameters, including rotation rate, age, and possiblymetallicity, and to the spread in stellar mass at a given MV.The K line is consistently wider than the H line, as expected, and itscentral absorption is more redshifted, indicating that the H and K linesform at slightly different heights in the chromosphere where thevelocities are slightly different. The equivalent width of Hαcorrelates with Ca II H and K only for stars having Ca II equivalentwidths above ~2 Å, suggesting the existence of a magneticthreshold above which the lower and upper chromospheres become thermallycoupled.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.
| A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog) The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.
| High Proper Motion Stars. IV. Radial Velocities of 166 Luyten Half-Second Stars We present 178 radial velocity measurements for 166 late-type starsselected from the Luyten half-second (LHS) proper motion catalog. Spacevelocities are given for all but two of them. Most of the stars liewithin 25 pc of the Sun, but the list includes a handful ofhigh-velocity transients from the halo population. None of the derivedspace velocities is high enough, however, to provide any constraint onthe escape speed at the solar circle. Twenty-six stars are discussed insomewhat more detail, and evidence is adduced that several of them maybe velocity variables.
| RXJ2130.6+4710 - an eclipsing white dwarf-M-dwarf binary star We report the detection of eclipses in the close white-dwarf-M-dwarfbinary star RXJ2130.6+4710. We present light curves in the B, V and Ibands and fast photometry obtained with the three-channel CCD photometerUltracam of the eclipse in the u', g' and r' bands. The depth of theeclipse varies from 3.0 mag in the u' band to less than 0.1 mag in the Iband. The times of mid-eclipse are given by the ephemerisBJD(mid-eclipse) = 2452785.681876(2) + 0.521035625(3) E, where figuresin parentheses denote uncertainties in the final digit. We presentmedium-resolution spectroscopy from which we have measured thespectroscopic orbits of the M dwarf and white dwarf. We estimate thatthe spectral type of the M dwarf is M3.5Ve or M4Ve, although the data onwhich this is based are not ideal for spectral classification. We havecompared the spectra of the white dwarf with synthetic spectra from purehydrogen model atmospheres to estimate that the effective temperature ofthe white dwarf is Teff= 18000 +/- 1000 K. We have used thewidth of the primary eclipse and duration of totality measured preciselyfrom the Ultracam u' data combined with the amplitude of the ellipsoidaleffect in the I band and the semi-amplitudes of the spectroscopic orbitsto derive masses and radii for the M dwarf and white dwarf. The M dwarfhas a mass of 0.555 +/- 0.023 Msolar and a radius of 0.534+/- 0.053 Rsolar, which is a typical radius for stars of thismass. The mass of the white dwarf is 0.554 +/- 0.017 Msolarand its radius is 0.0137 +/- 0.0014 Rsolar, which is theradius expected for a carbon-oxygen white dwarf of this mass andeffective temperature. The light curves are affected by frequent flaresfrom the M dwarf and the associated dark spots on its surface can bedetected from the distortions to the light curves and radial velocities.RXJ2130.6+4710 is a rare example of a pre-cataclysmic variable star thatwill start mass transfer at a period above the period gap forcataclysmic variables.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Hipparcos red stars in the HpV_T2 and V I_C systems For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997
| The radii and spectra of the nearest stars We discuss direct measurements of the radii of 36 stars located closerthan 25 parsecs to the Sun. We present the data on 307 radii and 326spectral types and luminosity classes for the nearest stars locatedinside the sphere with a radius of 10 parsecs.
| Radial Velocities for 889 Late-Type Stars We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.
| Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.
| The Palomar/MSU Nearby Star Spectroscopic Survey. III. Chromospheric Activity, M Dwarf Ages, and the Local Star Formation History We present high-resolution echelle spectroscopy of 676 nearby M dwarfs.Our measurements include radial velocities, equivalent widths ofimportant chromospheric emission lines, and rotational velocities forrapidly rotating stars. We identify several distinct groups by theirHα properties and investigate variations in chromospheric activityamong early (M0-M2.5) and mid (M3-M6) dwarfs. Using a volume-limitedsample together with a relationship between age and chromosphericactivity, we show that the rate of star formation in the immediate solarneighborhood has been relatively constant over the last 4 Gyr. Inparticular, our results are inconsistent with recent large bursts ofstar formation. We use the correlation between Hα activity and ageas a function of color to set constraints on the properties of L and Tdwarf secondary components in binary systems. We also identify a numberof interesting stars, including rapid rotators, radial velocityvariables, and spectroscopic binaries. Observations were made at the 60inch telescope at Palomar Mountain, which is jointly owned by theCalifornia Institute of Technology and the Carnegie Institution ofWashington.
| Studies of multiple stellar systems - IV. The triple-lined spectroscopic system Gliese 644 We present a radial velocity study of the triple-lined system Gliese 644and derive spectroscopic elements for the inner and outer orbits withperiods of 2.9655 and 627d. We also utilize old visual data, as well asmodern speckle and adaptive optics observations, to derive a newastrometric solution for the outer orbit. These two orbits togetherallow us to derive masses for each of the three components in thesystem: MA=0.410+/-0.028 (6.9 per cent),MBa=0.336+/-0.016 (4.7 per cent), andMBb=0.304+/-0.014 (4.7 per cent)Msolar. We suggestthat the relative inclination of the two orbits is very small. Ourindividual masses and spectroscopic light ratios for the three M starsin the Gliese 644 system provide three points for the mass-luminosityrelation near the bottom of the main sequence, where the relation ispoorly determined. These three points agree well with theoretical modelsfor solar metallicity and an age of 5Gyr. Our radial velocities forGliese 643 and vB 8, two common proper motion companions of Gliese 644,support the interpretation that all five M stars are moving together ina physically bound group. We discuss possible scenarios for theformation and evolution of this configuration, such as the formation ofall five stars in a sequence of fragmentation events leading directly tothe hierarchical configuration now observed, versus formation in a smallN cluster with subsequent dynamical evolution into the presenthierarchical configuration.
| Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521
| Photometric Measurements of the Fields of More than 700 Nearby Stars In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.
| Catalogue and bibliography of the UV Cet-type flare stars and related objects in the solar vicinity This new catalogue of flare stars includes 463 objects. It containsastrometric, spectral and photometric data as well as information on theinfrared, radio and X-ray properties and general stellar parameters.From the total reference list of about 3400 articles, partial listsselected by objects, authors, key words and by any pairs of thesecriteria can be obtained Tables 1, 2 and 3 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.
| The ROSAT all-sky survey catalogue of the nearby stars We present X-ray data for all entries of the Third Catalogue of NearbyStars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detectedas X-ray sources in the ROSAT all-sky survey. The catalogue contains1252 entries yielding an average detection rate of 32.9 percent. Inaddition to count rates, source detection parameters, hardness ratios,and X-ray fluxes we also list X-ray luminosities derived from Hipparcosparallaxes. Catalogue also available at CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Catalogue of H-alpha emission stars in the Northern Milky Way The ``Catalogue of Stars in the Northern Milky Way Having H-alpha inEmission" appears in Abhandlungen aus der Hamburger Sternwarte, Band XIin the year 1997. It contains 4174 stars, range {32degr <= l() II< 214degr , -10degr < b() II < +10degr } having the Hαline in emission. HBH stars and stars of further 99 lists taken from theliterature till the end of 1994 were included in the catalogue. We givethe cross-identification of stars from all lists used. The catalogue isalso available in the Centre de Données, Strasbourg ftp130.79.128.5 or http://cdsweb.u-strasbg.fr and at the HamburgObservatory via internet.
| The Galactic Orbits of Nearby UV Ceti Stars The galactic orbits of 93 UV Ceti stars of the solar neighborhood havebeen numerically integrated. The UV Ceti stars studied are those of theworking list for which Poveda et al. (1996a) determined kinematicproperties and ages. All stars are contained within 25 pc of the Sun(π ≥ 0.04''), and values for their distances, proper motions andradial velocities are available for them (Gliese & Jahreiss 1991).The galactic potential model of Allen & Santillán (1991) wasused, and the orbits were integrated for times similar to the age of theold disk. The galactic orbital parameters are obtained. The orbits areall regular, and the values found for the orbital parameters are similarto those characteristic of the classic young thin disk. The verticalscale height found for the whole sample is 115 pc. However, the orbitalparameters found for the 7 objects with extreme kinematiccharacteristics recognized in Poveda et al. are markedly different fromthose of the rest of the flare stars; in particular, their orbitaleccentricities are larger than 0.3. The vertical scale height of thesample excluding the anomalous objects is just 103 pc. Consequently, wepropose that the anomalous objects belong to the thick disk, which maybe characterized by either e≥ 0.3 or | zmax | > 400 pc.
| Rotation and chromospheric activity in field M dwarfs We have obtained high resolution spectra for a volume-limited sample of118 field M dwarfs. From these observations we derive projectedrotational velocities and fluxes in the H_alpha and H_beta lines. 8stars are double-lined spectroscopic binaries with measured or probableperiods short enough for rotation to be tidally synchronized with theorbit, and another 11 are visual binaries where we cannot yet separatethe lines of the two stars. Of the remaining 99 stars, 24 haverotational velocities above our detection limit of ~ 2 km.s(-1) , andsome are quite fast rotators, including two with v sin i\ =~ 30 km.s(-1)and one with v sin i\ =~ 50 km.s(-1) . Given the small radii of Mdwarfs, these moderate rotational velocities correspond to rather shortmaximum rotational periods, of only 7-8 hours. These three stars aregood candidates for Doppler imaging. We find that rotation is stronglycorrelated with both spectral type and kinematic population: all starswith measurable rotation are later than M3.5, and all but one havekinematic properties typical of the young disk, or intermediate betweenthe young disk and the the old disk. We interpret this correlation asevidence for a spin-down timescale that increases with decreasing mass.At the age of the old disk or halo, all stars earlier than M5-M6(0.1-0.15Msun) have spun-down to below our detection limit,while at the age of the young disk this has only happened for starsearlier than M3.5. The one star with measurable rotation and akinematics intermediate between old disk and population II has spectraltype M6. It is probably an old star whose mass is low enough that it hasretained significant rotation up to present, still consistently withlonger spin-down times for lower mass stars. We observe, on the otherhand, no conspicuous change in the v sin i\ distribution or activitypattern at the mass (M ~ 0.35 Msun) below which stars remainfully convective down to the main sequence. These new data areconsistent with a saturated correlation between rotation and activity,similar to the one observed for younger or more massive stars:L_X/Lbol and L_{H_alpha }/Lbol both correlate withv sin i\ for v sin i\ -5km.s^{-1} and then saturate at respectively10^{-2.5} and 10^{-3.5}$. Based on observations made at the Observatoirede Haute-Provence (CNRS), France Tables 2 and 4 are also available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.
|
Enviar un nuevo artículo
Enlaces relacionados
- - No se han encontrado enlaces -
En viar un nuevo enlace
Miembro de los siguientes grupos:
|
Datos observacionales y astrométricos
Constelación: | Casiopea |
Ascensión Recta: | 01h02m32.24s |
Declinación: | +71°40'47.3" |
Magnitud Aparente: | 10.015 |
Distancia: | 8.145 parsecs |
Movimiento Propio en Ascensión Recta: | 1744.2 |
Movimiento Propio en Declinación: | -381.4 |
B-T magnitude: | 11.862 |
V-T magnitude: | 10.168 |
Catálogos y designaciones:
|