Tartalom
Képek
Kép feltöltése
DSS Images Other Images
Kapcsolódó cikkek
Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| M dwarfs: effective temperatures, radii and metallicities We empirically determine effective temperatures and bolometricluminosities for a large sample of nearby M dwarfs, for which highaccuracy optical and infrared photometry is available. We introduce anew technique which exploits the flux ratio in different bands as aproxy of both effective temperature and metallicity. Our temperaturescale for late-type dwarfs extends well below 3000K (almost to the browndwarf limit) and is supported by interferometric angular diametermeasurements above 3000K. Our metallicities are in excellent agreement(usually within 0.2dex) with recent determinations via independenttechniques. A subsample of cool M dwarfs with metallicity estimatesbased on hotter Hipparcos common proper motion companions indicates ourmetallicities are also reliable below 3000K, a temperature rangeunexplored until now. The high quality of our data allows us to identifya striking feature in the bolometric luminosity versus temperatureplane, around the transition from K to M dwarfs. We have compared oursample of stars with theoretical models and conclude that thistransition is due to an increase in the radii of the M dwarfs, a featurewhich is not reproduced by theoretical models.
| Further observations of Hipparcos red stars and standards for UBV(RI)C photometry We present homogeneous and standardized UBV(RI)C JHKphotometry for over 100 M stars selected from an earlier paper on thebasis of apparent photometric constancy. L photometry has been obtainedfor stars brighter than about L = 6. Most of the stars have asubstantial number of UBV(RI)C observations and, it is hoped,will prove useful as red supplementary standards. Additionally, we listJHK photometry for nearly 300 Hipparcos red stars not selected asstandards, as well as L photometry for the brightest stars.
| New neighbours. V. 35 DENIS late-M dwarfs between 10 and 30 parsecs This paper reports updated results on our systematic mining of the DENISdatabase for nearby very cool M-dwarfs (M 6V-M 8V, 2.0 <= I-J <=3.0, photometric distance within 30 pc), initiated by Phan-Bao et al.(\cite{phan-bao}, hereafter Paper I). We use M dwarfs with well measuredparallaxes (HIP, GCTP, ...) to calibrate the DENIS (MI, I-J)colour-luminosity relationship. The resulting distance error for singledwarfs is about 25%. Proper motions, as well as B and R magnitudes, weremeasured on archive Schmidt plates for those stars in the DENIS databasethat meet the photometric selection criteria. We then eliminate thegiants by a Reduced Proper Motion cutoff, which is significantly moreselective than a simple proper motion cutoff. It greatly reduces theselection bias against low tangential velocity stars, and results in anearly complete sample. Here we present new data for 62 red dwarfcandidates selected over 5700 square degrees in the DENIS database. 26of those originate in the 2100 square degrees analysed in Paper I, withimproved parameters here, and 36 were found in 3600 additional squaredegrees. 25 of those are new nearby dwarfs. We determine from thatsample of 62 stars a stellar density for 12.0 <= MI <=14.0 of /lineΦ{Icor}=(2.2 +/- 0.4)x 10-3 starspc-3 mag-1. This value is consistent withphotometric luminosity functions measured from deeper and smaller-fieldobservations, but not with the nearby star luminosity function. Inaddition we cross-identified the NLTT and DENIS catalogues to find 15similar stars, in parts of the sky not yet covered by thecolour-selected search. We present distance and luminosity estimates forthese 15 stars, 10 of which are newly recognized nearby dwarfs. Asimilar search in Paper I produced 4 red dwarf candidates, and we havethus up to now identified a total of 35 new nearby late-M dwarfs.
| UBV(RI)C photometry of Hipparcos red stars We present homogeneous and standardized UBV(RI)C photometryfor nearly 550 M stars selected from the Hipparcos satellite data baseusing the following selection criteria: lack of obvious variability (noHipparcos variability flag); δ<+10°(V-I)>1.7 and Vmagnitude fainter than about 7.6. Comparisons are made between thecurrent photometry, other ground-based data sets and Hipparcosphotometry. We use linear discriminant analysis to determine aluminosity segregation criterion for late-type stars, and principalcomponent analysis to study the statistical structure of the colourindices and to calibrate absolute magnitude in terms of (V-I) for thedwarf stars. Various methods are used to determine the mean absolutemagnitude of the giant stars. We find 10 dwarf stars, apparentlypreviously unrecognized (prior to Hipparcos) as being within 25pc,including five within 20pc.
| New light on faint stars. I - The luminosity function in the solar neighbourhood From photoelectric photometry of red dwarf stars identified in anobjective prism survey, a magnitude-limited complete sample has beendefined. Applying photometric parallaxes, calibrated for theKron-Cousins system by observations of trigonometric parallax stars,this sample is used to determine the space densities of stars withabsolute magnitudes between + 7 and + 12. The resultant luminosityfunction is consistent with the Luyten and Wielen functions for thesolar neighbourhood. An analysis of the stellar kinematics shows littlesignificant evidence of a substantial local population of low spacemotion M-dwarfs.
| Photometry of Southern Hemisphere red dwarf stars Results are presented for a photometric investigation of aspectroscopically selected sample of red dwarf stars in the SouthernHemisphere. Absolute magnitudes and distances for the stars areestimated from broadband red colors. Three stars which may besubluminous are identified, as are several stars which may be within 25pc. The tangential velocity and velocity dispersion of the sample aresimilar to values found in other studies of nearby late-type stars.
| The space density and kinematics of dwarf M stars The results of an objective-prism survey for dwarf stars, K7 and later,are presented. One hundred twenty-one red sensitive plates covering 1720sq. degrees of the southern sky were obtained with the Curtis Schmidttelescope at C.T.I.O. The resulting luminosity function rises from log N+ 10 = 7.9 at MV = 8 to about 8.7 at MV = 11 and12. About 75% of the dwarfs in this survey are identified with BPMstars, but inserting the proper motions given into the equations of themethod of mean absolute magnitudes yields values of MB aboutthree magnitudes brighter than the spectral types would indicate. Thatthe method of mean absolute magnitudes appears to be calibrated on starsof higher than average proper motion lends credence to the luminosityfunction result. A galactic mass density is found for the dwarfsconsidered.
|
Új cikk hozzáadása
Kapcsolódó hivatkozások
- - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása
Besorolás csoportokba:
|
Pozíciós és asztrometriai adatok
Csillagkép: | Páva |
Rektaszcenzió: | 18h41m19.76s |
Deklináció: | -60°25'46.5" |
Vizuális fényesség: | 11.03 |
Távolság: | 36.35 parszek |
RA sajátmozgás: | 0 |
Dec sajátmozgás: | 0 |
B-T magnitude: | 13.578 |
V-T magnitude: | 11.241 |
Katalógusok és elnevezések:
|