Tartalom
Képek
Kép feltöltése
DSS Images Other Images
Kapcsolódó cikkek
Double-lined Spectroscopic Binary Stars in the Radial Velocity Experiment Survey We devise a new method for the detection of double-lined binary stars ina sample of the Radial Velocity Experiment (RAVE) survey spectra. Themethod is both tested against extensive simulations based on syntheticspectra and compared to direct visual inspection of all RAVE spectra. Itis based on the properties and shape of the cross-correlation function,and is able to recover ~80% of all binaries with an orbital period oforder 1 day. Systems with periods up to 1 yr are still within thedetection reach. We have applied the method to 25,850 spectra of theRAVE second data release and found 123 double-lined binary candidates,only eight of which are already marked as binaries in the SIMBADdatabase. Among the candidates, there are seven that show spectralfeatures consistent with the RS CVn type (solar type with activechromosphere) and seven that might be of W UMa type (over-contactbinaries). One star, HD 101167, seems to be a triple system composed ofthree nearly identical G-type dwarfs. The tested classification methodcould also be applicable to the data of the upcoming Gaia mission.
| B.R.N.O. Times of minima Not Available
| A catalogue of eclipsing variables A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.
| Spectroscopy, Photometry and Micro-arcsec Astrometry of Binaries with the GAIA Space Mission and with the RAVE Experiment The GAIA astrometric mission of ESA will be very efficient indiscovering binary and multiple stars with any orbital period, fromminutes to millions of years. The main parameters of the revised missiondesign are presented. Next we estimate the fraction of binary starsdiscovered by means of astrometry, photometry and on-board spectroscopy.Finally we summarize observations that confirm the ability to measurephysical parameters like masses, radii and spectroscopic distance fromGAIA data alone. GAIA will fly only in 2010, but the radial velocityexperiment (RAVE) has started this year. We show that its spectroscopicobservations have the capacity to discover a large fraction of so farunknown binary systems.
| An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks We have assembled a database of stars having both masses determined frommeasured orbital dynamics and sufficient spectral and photometricinformation for their placement on a theoretical H-R diagram. Our sampleconsists of 115 low-mass (M<2.0 Msolar) stars, 27pre-main-sequence and 88 main-sequence. We use a variety of availablepre-main-sequence evolutionary calculations to test the consistency ofpredicted stellar masses with dynamically determined masses. Despitesubstantial improvements in model physics over the past decade, largesystematic discrepancies still exist between empirical and theoreticallyderived masses. For main-sequence stars, all models considered predictmasses consistent with dynamical values above 1.2 Msolar andsome models predict consistent masses at solar or slightly lower masses,but no models predict consistent masses below 0.5 Msolar,with all models systematically underpredicting such low masses by5%-20%. The failure at low masses stems from the poor match of mostmodels to the empirical main sequence below temperatures of 3800 K, atwhich molecules become the dominant source of opacity and convection isthe dominant mode of energy transport. For the pre-main-sequence samplewe find similar trends. There is generally good agreement betweenpredicted and dynamical masses above 1.2 Msolar for allmodels. Below 1.2 Msolar and down to 0.3 Msolar(the lowest mass testable), most evolutionary models systematicallyunderpredict the dynamically determined masses by 10%-30%, on average,with the Lyon group models predicting marginally consistent masses inthe mean, although with large scatter. Over all mass ranges, theusefulness of dynamical mass constraints for pre-main-sequence stars isin many cases limited by the random errors caused by poorly determinedluminosities and especially temperatures of young stars. Adopting awarmer-than-dwarf temperature scale would help reconcile the systematicpre-main-sequence offset at the lowest masses, but the case for this isnot compelling, given the similar warm offset at older ages between mostsets of tracks and the empirical main sequence. Over all age ranges, thesystematic discrepancies between track-predicted and dynamicallydetermined masses appear to be dominated by inaccuracies in thetreatment of convection and in the adopted opacities.
| Evaluating GAIA performances on eclipsing binaries. III. Orbits and stellar parameters for UW LMi, V432 Aur and CN Lyn The orbits and physical parameters of three detached F and G-typeeclipsing binaries have been derived combining Hipparcos HPphotometry with 8480-8740 Å ground-based spectroscopy, simulatingthe photometric + spectroscopic observations that the GAIA mission willobtain. Tycho BT and VT light curves are too noisyto be modeled for the three targets, and only mean Tycho colors areretained to constrain the temperature. No previous combinedphotometric+spectroscopic solution exists in the literature for any ofthe three targets. Quite remarkably, CN Lyn turned out to be anequal-masses F5 triple system. Distances from the orbital solutionsagree within the astrometric error with the Hipparcos parallaxes.
| Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
| Radial velocities. Measurements of 2800 B2-F5 stars for HIPPARCOS Radial velocities have been determined for a sample of 2930 B2-F5 stars,95% observed by the Hipparcos satellite in the north hemisphere and 80%without reliable radial velocity up to now. Observations were obtainedat the Observatoire de Haute Provence with a dispersion of 80Ä,mm(-1) with the aim of studying stellar and galactic dynamics.Radial velocities have been measured by correlation with templates ofthe same spectral class. The mean obtained precision is 3.0 km s(-1)with three observations. A new MK spectral classification is estimatedfor all stars. Based on observations made at the Haute ProvenceObservatory, France and on data from The Hipparcos Catalogue, ESA.Tables 4, 5 and 6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr or viahttp://cdsweb.u-strasbg.fr/Abstract.htm
| The 74th Special Name-list of Variable Stars We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.
|
Új cikk hozzáadása
Kapcsolódó hivatkozások
- - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása
Besorolás csoportokba:
|
Pozíciós és asztrometriai adatok
Csillagkép: | Hiúz |
Rektaszcenzió: | 08h01m37.20s |
Deklináció: | +38°44'58.4" |
Vizuális fényesség: | 9.068 |
RA sajátmozgás: | 1.8 |
Dec sajátmozgás: | 35.9 |
B-T magnitude: | 9.573 |
V-T magnitude: | 9.11 |
Katalógusok és elnevezések:
|