Оглавление
Изображения
Загрузить ваше изображение
DSS Images Other Images
Публикации по объекту
Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.
| Infrared Surface Brightness Distances to Cepheids: A Comparison of Bayesian and Linear-Bisector Calculations We have compared the results of Bayesian statistical calculations andlinear-bisector calculations for obtaining Cepheid distances and radiiby the infrared surface brightness method. We analyzed a set of 38Cepheids using a Bayesian Markov Chain Monte Carlo method that had beenrecently studied with a linear-bisector method. The distances obtainedby the two techniques agree to 1.5%+/-0.6%, with the Bayesian distancesbeing larger. The radii agree to 1.1%+/-0.7%, with the Bayesiandeterminations again being larger. We interpret this result asdemonstrating that the two methods yield the same distances and radii.This implies that the short distance to the Large Magellanic Cloud foundin recent linear-bisector studies of Cepheids is not caused bydeficiencies in the mathematical treatment. However, the computeduncertainties in distance and radius for our data set are larger in theBayesian calculation by factors of 1.4-6.7. We give reasons to favor theBayesian computations of the uncertainties. The larger uncertainties canhave a significant impact on interpretation of Cepheid distances andradii obtained from the infrared surface brightness method.
| Pulsation and Evolutionary Masses of Classical Cepheids. I. Milky Way Variables We investigate a selected sample of Galactic classical Cepheids withavailable distance and reddening estimates in the framework of thetheoretical scenario provided by pulsation models, computed with metalabundance Z=0.02, helium content in the range of Y=0.25-0.31, andvarious choices of the stellar mass and luminosity. After transformingthe bolometric light curve of the fundamental models into BVRIJKmagnitudes, we derived analytical relations connecting the pulsationperiod with the stellar mass, the mean (intensity averaged) absolutemagnitude, and the color of the pulsators. These relations are usedtogether with the Cepheid observed absolute magnitudes in order todetermine the ``pulsation'' mass, Mp, of each individualvariable. The comparison with the ``evolutionary'' masses,Me,can, given by canonical (no convective core overshooting,no mass loss) models of central He-burning stellar structures revealsthat the Mp/Me,can ratio is correlated with theCepheid period, ranging from ~0.8 at logP=0.5 to ~1 at logP=1.5. Wediscuss the effects of different input physics and/or assumptions on theevolutionary computations, as well as of uncertainties in the adoptedCepheid metal content, distance, and reddening. Eventually, we find thatthe pulsational results can be interpreted in terms of mass loss duringor before the Cepheid phase, whose amount increases as the Cepheidoriginal mass decreases. It vanishes around 13 Msolar andincreases up to ~20% at 4 Msolar.
| Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance We have applied the infrared surface brightness (ISB) technique toderive distances to 13 Cepheid variables in the LMC that span a periodrange from 3 to 42 days. From the absolute magnitudes of the variablescalculated from these distances, we find that the LMC Cepheids definetight period-luminosity (PL) relations in the V, I, W, J, and K bandsthat agree exceedingly well with the corresponding Galactic PL relationsderived from the same technique and are significantly steeper than theLMC PL relations in these bands observed by the OGLE-II Project in V, I,and W and by Persson and coworkers in J and K. We find that the LMCCepheid distance moduli we derive, after correcting them for the tilt ofthe LMC bar, depend significantly on the period of the stars, in thesense that the shortest period Cepheids have distance moduli near 18.3,whereas the longest period Cepheids are found to lie near 18.6. Sincesuch a period dependence of the tilt-corrected LMC distance modulishould not exist, there must be a systematic, period-dependent error inthe ISB technique not discovered in previous work. We identify as themost likely culprit the p-factor, which is used to convert the observedCepheid radial velocities into their pulsational velocities. Bydemanding (1) a zero slope on the distance modulus versus period diagramand (2) a zero mean difference between the ISB and ZAMS fitting distancemoduli of a sample of well-established Galactic cluster Cepheids, wefind that p=1.58(+/-0.02)-0.15(+/-0.05)logP, with the p-factor dependingmore strongly on Cepheid period (and thus luminosity) than indicated bypast theoretical calculations. When we recalculate the distances of theLMC Cepheids with the revised p-factor law suggested by our data, we notonly obtain consistent distance moduli for all stars but also decreasethe slopes in the various LMC PL relations (and particularly in thereddening-independent K and W bands) to values that are consistent withthe values observed by OGLE-II and Persson and coworkers. From our 13Cepheids, we determine the LMC distance modulus to be 18.56+/-0.04 mag,with an additional estimated systematic uncertainty of ~0.1 mag. Usingthe same corrected p-factor law to redetermine the distances of theGalactic Cepheids, the new Galactic PL relations are also foundconsistent with the observed optical and near-infrared PL relations inthe LMC. Our main conclusion from the ISB analysis of the LMC Cepheidsample is that, within current uncertainties, there seems to be nosignificant difference between the slopes of the PL relations in theMilky Way and LMC. With literature data on more metal-poor systems, itseems now possible to conclude that the slope of the Cepheid PL relationis independent of metallicity in the broad range in [Fe/H] from -1.0 dexto solar abundance, within a small uncertainty. The new evidence fromthe first ISB analysis of a sizable sample of LMC Cepheids suggests thatthe previous, steeper Galactic PL relations obtained from this techniquewere caused by an underestimation of the period dependence in themodel-based p-factor law used in the previous work. We emphasize,however, that our current results must be substantiated by newtheoretical models capable of explaining the steeper period dependenceof the p-factor law, and we will also need data on more LMC fieldCepheids to rule out remaining concerns about the validity of ourcurrent interpretation.
| The metallicity dependence of the Cepheid PL-relation A sample of 37 Galactic, 10 LMC and 6 SMC cepheids is compiled for whichindividual metallicity estimates exist and BVIK photometry in almost allcases. The Galactic cepheids all have an individual distance estimateavailable. For the MC objects different sources of photometry arecombined to obtain improved periods and mean magnitudes. Amulti-parameter Period-Luminosity relation is fitted to the data whichalso solves for the distance to the LMC and SMC. When all three galaxiesare considered, without metallicity effect, a significant quadratic termin log P is found, as previously observed and also predicted in sometheoretical calculations. For the present sample it is empiricallydetermined that for log P < 1.65 linear PL-relations may be adopted,but this restricts the sample to only 4 LMC and 1 SMC cepheid.Considering the Galactic sample a metallicity effect is found in thezero point in the VIWK PL-relation (-0.6 ± 0.4 or -0.8 ±0.3 mag/dex depending on the in- or exclusion of one object), in thesense that metal-rich cepheids are brighter. The small significance ismostly due to the fact that the Galactic sample spans a narrowmetallicity range. The error is to a significant part due to the errorin the metallicity determinations and not to the error in the fit.Including the 5 MC cepheids broadens the observed metallicity range anda metallity effect of about -0.27 ± 0.08 mag/dex in the zeropoint is found in VIWK, in agreement with some previous empiricalestimates, but now derived using direct metallicity determinations forthe cepheids themselves.
| The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud We have applied the near-IR Barnes-Evans realization of theBaade-Wesselink method as calibrated by Fouqué & Gieren(\cite{FG97}) to five metal-poor Cepheids with periods between 13 and 17days in the Small Magellanic Cloud as well as to a sample of 34 GalacticCepheids to determine the effect of metallicity on the period-luminosity(P-L) relation. For ten of the Galactic Cepheids we present new accurateand well sampled radial-velocity curves. The Baade-Wesselink analysisprovides accurate individual distances and luminosities for the Cepheidsin the two samples, allowing us to constrain directly, in a purelydifferential way, the metallicity effect on the Cepheid P-L relation.For the Galactic Cepheids we provide a new set of P-L relations whichhave zero-points in excellent agreement with astrometric andinterferometric determinations. These relations can be used directly forthe determination of distances to solar-metallicity samples of Cepheidsin distant galaxies, circumventing any corrections for metallicityeffects on the zero-point and slope of the P-L relation. We findevidence for both such metallicity effects in our data. Comparing ourtwo samples of Cepheids at a mean period of about 15 days, we find aweak effect of metallicity on the luminosity similar to that adopted bythe HST Key Project on the Extragalactic Distance Scale. The effect issmaller for the V band, where we find Δ MV/Δ[Fe/H] = -0.21±0.19, and larger for the Wesenheit index W, wherewe find Δ MW/Δ [Fe/H] = -0.29±0.19. Forthe I and K bands we find Δ MI/Δ [Fe/H] =-0.23± 0.19 and Δ MK/Δ [Fe/H] =-0.21± 0.19, respectively. The error estimates are 1 σstatistical errors. It seems now well established that metal-poorCepheids with periods longer than about 10 days are intrinsicallyfainter in all these bands than their metal-rich counterparts ofidentical period. Correcting the LMC distance estimate of Fouquéet al. (\cite{FSG03}) for this metallicity effect leads to a revised LMCdistance modulus of (m-M)_0 = 18.48± 0.07, which is also inexcellent agreement with the value of (m-M)_0 = 18.50± 0.10adopted by the Key Project. From our SMC Cepheid distances we determinethe SMC distance to be 18.88±0.13 magirrespective of metallicity.Some of the observations reported here were obtained with the MultipleMirror Telescope, operated jointly by the Smithsonian Institution andthe University of Arizona.Tables A.2-A.11 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/531
| Consistent distances from Baade-Wesselink analyses of Cepheids and RR Lyraes By using the same algorithm in the Baade-Wesselink analyses of GalacticRR Lyrae and Cepheid variables, it is shown that, within 0.03-mag1σ statistical error, they yield the same distance modulus for theLarge Magellanic Cloud. By fixing the zero-point of thecolour-temperature calibration to those of the current infrared fluxmethods and using updated period-luminosity-colour relations, we get anaverage value of 18.55 for the true distance modulus of the LMC.
| Interstellar Extinction and the Intrinsic Colors of Classical Cepheids in the Galaxy, the LMC, and the SMC New methods are applied to samples of classical cepheids in the galaxy,the Large Magellanic Cloud, and the Small Magellanic Cloud to determinethe interstellar extinction law for the classical cepheids, R B:R V:RI:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excessesfor classical cepheids in the galaxy,E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classicalcepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). Thedependence of the intrinsic color (B-V)0 on the metallicity of classicalcepheids is discussed. The intrinsic color (V-I)0 is found to beabsolutely independent of the metallicity of classical cepheids. A highprecision formula is obtained for calculating the intrinsic colors ofclassical cepheids in the galaxy:(-)0=0.365(±0.011)+0.328(±0.012)logP.
| New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy 321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423
| The galactic abundance gradient from Cepheids. IV. New results for the outer disc As a continuation of our previous work on the abundance gradient in theouter part of the galactic disc, this paper presents results on themetallicicty distribution over galactocentric distances up to 15 kpc.The outer disc is clearly separated from the middle part by theexistence of a step in the metallicity distribution at about 10 kpc.Taking the region of galactocentric distances from 10 kpc to 15 kpc, onecan derive an iron gradient -0.03 +/- 0.01 dex kpc-1 (25stars). The existence of a discontinuity can be caused by the effectivesuppression of mixing processes near the corotation circle where theradial component of the gas velocity should be very small.Based on spectra collected at the New Technology Telescope at ESO - LaSilla, Chile, under programme 68.D-0201(B).Table A.1 is only available in electronic form athttp://www.edpsciences.org
| Fundamental Parameters of Cepheids. V. Additional Photometry and Radial Velocity Data for Southern Cepheids I present photometric and radial velocity data for Galactic Cepheids,most of them being in the southern hemisphere. There are 1250 Genevaseven-color photometric measurements for 62 Cepheids, the averageuncertainty per measurement is better than 0.01 mag. A total of 832velocity measurements have been obtained with the CORAVEL radialvelocity spectrograph for 46 Cepheids. The average accuracy of theradial velocity data is 0.38 km s-1. There are 33 stars withboth photometry and radial velocity data. I discuss the possiblebinarity or period change that these new data reveal. I also presentreddenings for all Cepheids with photometry. The data are availableelectronically. Based on observations obtained at the European SouthernObservatory, La Silla.
| Calibration of the distance scale from galactic Cepheids. I. Calibration based on the GFG sample New estimates of the distances of 36 nearby galaxies are presented basedon accurate distances of galactic Cepheids obtained by Gieren et al.(1998) from the geometrical Barnes-Evans method. The concept of``sosie'' is applied to extend the distance determination toextragalactic Cepheids without assuming the linearity of the PLrelation. Doing so, the distance moduli are obtained in astraightforward way. The correction for extinction is made using twophotometric bands (V and I) according to the principles introduced byFreedman & Madore (1990). Finally, the statistical bias due to theincompleteness of the sample is corrected according to the preceptsintroduced by Teerikorpi (1987) without introducing any free parameters(except the distance modulus itself in an iterative scheme). The finaldistance moduli depend on the adopted extinction ratioRV/RI and on the limiting apparent magnitude ofthe sample. A comparison with the distance moduli recently published bythe Hubble Space Telescope Key Project (HSTKP) team reveals a fairagreement when the same ratio RV/RI is used butshows a small discrepancy at large distance. In order to bypass theuncertainty due to the metallicity effect it is suggested to consideronly galaxies having nearly the same metallicity as the calibratingCepheids (i.e. Solar metallicity). The internal uncertainty of thedistances is about 0.1 mag but the total uncertainty may reach 0.3 mag.The table of the Appendix and Table 3 are available in electronic format CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/383/398, and on ouranonymous ftp-server www-obs.univ-lyon1.fr (pub/base/CEPHEIDES.tar.gz).
| Photoelectric Observations of Southern Cepheids in 2001 A total of 2097 photometric observations in the BVIc systemare presented for 117 Cepheids located in the southern hemisphere. Themain purpose of the photometry is to provide new epochs of maximumbrightness for studying Cepheid period changes, as well as to establishcurrent light elements for the Cepheids.
| Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521
| Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
| Galactic Cepheids. Catalogue of light-curve parameters and distances We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.
| Direct calibration of the Cepheid period-luminosity relation After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.
| I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.
| Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the Large Magellanic Cloud We have used the infrared Barnes-Evans surface brightness technique toderive the radii and distances of 34 Galactic Cepheid variables. Radiusand distance results obtained from both versions of the technique are inexcellent agreement. The radii of 28 variables are used to determine theperiod-radius (PR) relation. This relation is found to have a smallerdispersion than in previous studies, and is identical to the PR relationfound by Laney & Stobie from a completely independent method, a factwhich provides persuasive evidence that the Cepheid PR relation is nowdetermined at a very high confidence level. We use the accurate infrareddistances to determine period-luminosity (PL) relations in the V, I, J,H, and K passbands from the Galactic sample of Cepheids. We deriveimproved slopes of these relations from updated LMC Cepheid samples andadopt these slopes to obtain accurate absolute calibrations of the PLrelation. By comparing these relations to the ones defined by the LMCCepheids, we derive strikingly consistent and precise values for the LMCdistance modulus in each of the passbands that yield a mean value of mu0(LMC) = 18.46 +/- 0.02. By analyzing the observed dispersions of the PLrelations defined by the LMC and Galactic samples of Cepheids, wedisentangle the contributions due to uncertainties in the reddenings, indistance measurement, and due to metallicity effects, and we estimatethe intrinsic dispersion of the PL relation with the Wesenheit function.Assuming that the Galactic Cepheid distances are typically accurate to+/-3% (as shown in a previous paper), and assuming an intrinsic spreadin [Fe/H] of ~0.4 dex among the Cepheids of our sample as obtained byFry & Carney, the observed dispersion of the Galactic Cepheid PLrelation suggests a metallicity dependence of Delta mu / Delta [Fe/H] ~0.2, about half the value suggested by Sasselov et al. from EROS data.Since this estimate of the metallicity dependence of the PL (V) relationis rather uncertain, however, we prefer to retain mu 0(LMC) = 18.46 asour best value, but with an increased uncertainty of +/-0.06, most ofwhich is due to the uncertainty in the appropriate metallicitycorrection. Our results show that the infrared Barnes-Evans technique isvery insensitive to both Cepheid metallicity and adopted reddening, andtherefore is a very powerful tool to derive accurate distances to nearbygalaxies by a direct application of the technique to their Cepheidvariables, rather than by comparing PL relations of different galaxies,which introduces much more sensitivity to metallicity and absorptioncorrections that are usually difficult to determine.
| Cepheid Distances from a Near-Infrared Surface Brightness Technique Not Available
| Galactic kinematics of Cepheids from HIPPARCOS proper motions The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.
| An improved calibration of Cepheid visual and infrared surface brightness relations from accurate angular diameter measurements of cool giants and supergiants. We have calibrated optical and near-infrared surface brightness - colourrelations for cool giant and supergiant stars using high-precisionangular diameters of these stars determined from Michelsoninterferometry. We find that the giant and supergiant relations areundistinguishable over a wide range of intrinsic colours. Weindependently determine the slopes of these relations obeyed by Cepheidvariables and find that in all the diagrams considered, these agree verywell with the slopes derived from the stable giants and supergiants.Forcing the slopes to the values derived from the Cepheids, we determinea very precise value of the zero point of the surface brightness -colour relations valid for Cepheid variables, which is 3.947+/-0.003.This value is in agreement with the one derived from the Cepheideffective temperature scale of Pel (1978), and from the lunaroccultation angular diameter of the Cepheid ζ Gem (Ridgway etal.1982). We apply our newly calibrated surface brightness - colourrelations to the cluster Cepheid U Sgr to find its radius and distancefrom the optical V, V-R_J_ and the infrared V, V-K and K, J-KBarnes-Evans technique. While the numerical values derived from thethree different versions of the technique do agree within 1-σ, thenear-infrared distance and radius values are 5-10 times more accuratethan the optical one; in particular, the distance and radius of the starderived from the V, V - K solution are 592 +/-4 pc and 48.7 +/-0.3 solarradii, respectively, with errors less than 1 percent. We briefly discussthe potential of the near-infrared versions of the Barnes-Evanstechnique to set a very accurate (0.02mag) zero point to Cepheidperiod-luminosity relations and thus make a very important contributionto the absolute calibration of the extragalactic distance scale.
| Search for resonance effects in long period Cepheids. Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.
| Parameters of the JHK light curves of classical Cepheids and the interstellar-extinction LAW. Not Available
| Long-Period Cepheids: Models and Observations Abstract image available at:http://adsabs.harvard.edu/abs/1995ApJ...451..703S
| Rotation Curve of the System of Classical Cepheids and the Distance to the Galactic Center Not Available
| The radii of Galactic Cepheids Optical photometry, infrared photometry and radial velocity data havebeen combined to derive Baade-Wesselink radii of 49 Galactic Cepheids.Of the many possible magnitude-colour combinations four are studied indetail, namely (V, B-V), (V, V-I_C), (K, J-K) and (K, V-K). Afundamental assumption in any form of the Baade-Wesselink technique isthat the surface brightness variations can be represented by changes inthe colour index. The sensitivity of the surface brightness-colour indexrelation to variations in gravity and microturbulence is examined frommodel atmosphere calculations. It is shown that the use of infraredphotometry in calculating Cepheid radii minimizes the effects of suchvariations, and that both random and systematic errors in Cepheid radiicalculated using optical photometry are much larger. The effects ofvarying microturbulence on radii determined using optical photometryappear to be even more severe than the effects of variations in surfacegravity, but both can cause serious systematic errors. The large numberof stars enables a detailed consideration of the factors systematicallyaffecting Baade-Wesselink radii. It is demonstrated that the limitingfactor in most of the radii derived from the observations we have usedis the accuracy with which the radius displacement curve can be definedfrom the radial velocity observations. The non-linear effects indetermining the radius are significant, and a new method by Balona isused to determine the non-linear maximum likelihood radii. This methodappears to be statistically correct, and supersedes the flawednon-linear correction algorithm used by Coulson et al. Comparisons withradii determined by least squares (including the surface brightnessmethod) show that the expected error-dependent systematic errors inleast-squares radii are indeed present. We demonstrate that thesystematic errors in radii calculated using V-I_C and V-R_J photometryappear to be virtually identical. The most accurate period-radiusrelation is derived from the combination of the (K, J-K) and (K, V-K)radius solutions:log R=1.821+0.751(log P-1) +/-0.008+/-0.026.Thisrelation differs significantly from many of the earlier determinationsof the period-radius relation based on various optical magnitude-colourcombinations. The slope is somewhat steeper than in Fernie's meanpre-OPAL theoretical relation, and the zero-point gives radii 12 percent smaller at log P=1. This deviation is in the expected sense, sincepre-OPAL studies predicted Cepheid luminosities greater than thoseobserved.
| Photoelectric Observations of Southern Cepheids in 1995 Not Available
| New radial velocities for 96 faint southern Cepheids 96 faint classical Cepheids have been measured, each a small number oftimes (4 to 7 times), in radial velocity, in order to calculate theircentre-of-mass radial velocity accurately enough for an analysis of thelocal galactic rotation. This paper contains the raw radial velocitydata. The analysis and results are presented in a joint paper in theMain Section of this journal (Pont et al. 1994).
|
Добавить новую статью
Внешние ссылки
- - Внешних ссылок не найдено -
Добавить внешнюю ссылку
Группы:
|
Наблюдательные данные и астрометрия
Созвездие: | Паруса |
Прямое восхождение: | 10h20m41.03s |
Склонение: | -55°19'17.0" |
Видимая звёздная величина: | 8.422 |
Расстояние: | 10000000 парсек |
Собственное движение RA: | -6.7 |
Собственное движение Dec: | 1.7 |
B-T magnitude: | 10.083 |
V-T magnitude: | 8.56 |
Каталоги и обозначения:
|