Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

HD 199288


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

A New Color-Magnitude Diagram for 47 Tucanae: A Statistical Analysis
We present a statistical analysis of color-magnitude diagrams of 47 Tucderived from original and archival BVI photometry that produces the mostprobable locus for single stars. After adopting E(B-V) = 0.04, we derivean apparent distance modulus (m - M) V = 13.375 andachieve good matches to the most probable locus in the [B - V, V],[V - I, I], and [B - I, I] planes with 12 Gyr, [?/Fe]= +0.3, [Fe/H] = -0.83 isochrones from the Victoria-Regina models.This metallicity is generally lower than recent spectroscopicallyderived estimates for the cluster, but it is reinforced by themain-sequence match with a sample of subdwarfs.Based in part on observations made with the European SouthernObservatory (ESO) telescopes and obtained from the ESO/ST-ECF ScienceArchive facility.

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Apex diagrams for the stellar population of the solar neighborhood
We have studied some kinematic features of the coronas of near-solarstellar streams, based on Hipparcos observations. Apex diagrams forkinematic streams, open clusters, and field stars are plotted. In ouranalysis, we used the apex-diagram (AD) method we developed earlier. Wefind that the Eggen streams and Arcturus stream have similar properties,providing evidence for kinematic inhomogeneity of their coronas and theexistence of stellar groups such as those detected in the corona of theUrsa Major stream.

Beyond the Iron Peak: r- and s-Process Elemental Abundances in Stars with Planets
We present elemental abundances of 118 stars (28 of which are knownextrasolar planetary host stars) observed as part of theAnglo-Australian Planet Search. Abundances of O, Mg, Cr, Y, Zr, Ba, Nd,and Eu (along with previously published abundances for C and Si) arepresented. This study is one of the first to specifically examineplanetary host stars for the heavy elements produced by neutron capturereactions. We find that the abundances in host stars are chemicallydifferent from both the standard solar abundances and the abundances innon-host stars in all elements studied, with enrichments over non-hoststars ranging from 0.06 dex (for O) to 0.11 dex (for Cr and Y). Suchabundance trends are in agreement with other previous studies of fieldstars and lead us to conclude that the chemical anomalies observed inplanetary host stars are the result of normal galactic chemicalevolution processes. Based on this observation, we conclude that theobserved chemical traits of planetary host stars are primordial inorigin, coming from the original nebula and not from a ``pollution''process occurring during or after formation, and that planet formationoccurs naturally with the evolution of stellar material.

Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes
To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373

The main sequence from F to K stars of the solar neighbourhood in SDSS colours
For an understanding of Galactic stellar populations in the SDSS filtersystem well defined stellar samples are needed. The nearby stars providea complete stellar sample representative for the thin disc population.We compare the filter transformations of different authors applied tothe main sequence stars from F to K dwarfs to SDSS filter system anddiscuss the properties of the main sequence. The location of the meanmain sequence in colour-magnitude diagrams is very sensitive tosystematic differences in the filter transformation. A comparison withfiducial sequences of star clusters observed in g', r', and i' show goodagreement. Theoretical isochrones from Padua and from Dartmouth havestill some problems, especially in the (r-i) colours.

Manganese trends in a sample of thin and thick disk stars. The origin of Mn
Context: Manganese is an iron-peak element and although thenucleosynthesis path that leads to its formation is fairly wellunderstood, it remains unclear which objects, SN II and/or SN Ia, thatcontribute the majority of Mn to the interstellar medium. It alsoremains unclear to which extent the supernovae Mn yields depend on themetallicity of the progenitor star or not. Aims: By using a wellstudied and well defined sample of 95 dwarf stars we aim at furtherconstraining the formation site(s) of Mn. Methods: We derive Mnabundances through spectral synthesis of four Mn I lines at 539.4,549.2, 601.3, and 601.6 nm. Stellar parameters and data for oxygen aretaken from Bensby et al. (2003, 2004, 2005). Results: Whencomparing our Mn abundances with O abundances for the same stars we findthat the abundance trends in the stars with kinematics typical of thethick disk can be explained by metallicity dependent yields from SN II.We go on and combine our data for dwarf stars in the disks with data fordwarf and giant stars in the metal-poor thick disk and halo from theliterature. We find that dwarf and giant stars show the same trends,which indicates that neither non-LTE nor evolutionary effects are amajor concern for Mn. Furthermore, the [Mn/O] vs. [O/H] trend in thehalo is flat. Conclusions: We conclude that the simplestinterpretation of our data is that Mn is most likely produced in SN IIand that the Mn yields for such SNae must be metallicity dependent.Contribution from SN Ia in the metal-rich thin disk can not, however, beexcluded.Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatory on La Silla,Chile, Proposals # 65.L-0019(B) and 67.B-0108(B). The full versions ofTables 4 and 5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/467/665

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Metallicity and absolute magnitude calibrations for UBV photometry
Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).

The abundance distribution of stars with planets
We present the results of a uniform, high-precision spectroscopicmetallicity study of 136 G-type stars from the Anglo-Australian PlanetSearch, 20 of which are known to harbour extrasolar planets (as at 2005July). Abundances in Fe, C, Na, Al, Si, Ca, Ti and Ni are presented,along with Strömgen photometric metallicities. This study is one ofseveral recent studies examining the metallicities of a sample ofplanet-host and non-planet-host stars that were obtained from a singlesample, and analysed in an identical manner, providing an unbiasedestimate of the metallicity trends for planet-bearing stars. We findthat non-parametric tests of the distribution of metallicities forplanet-host and non-planet-host stars are significantly different at alevel of 99.4 per cent confidence. We confirm the previously observedtrend for planet-host stars to have higher mean metallicities thannon-planet-host stars, with a mean metallicity for planet-host stars of[Fe/H] = 0.06 +/- 0.03dex compared with [Fe/H] = -0.09 +/- 0.01dex fornon-host-stars in our sample. This enrichment is also seen in the otherelements studied. Based on our findings, we suggest that this observedenhancement is more likely a relic of the original gas cloud from whichthe star and its planets formed, rather than being due to `pollution' ofthe stellar photosphere.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The origin and chemical evolution of carbon in the Galactic thin and thick discs*
In order to trace the origin and evolution of carbon in the Galacticdisc, we have determined carbon abundances in 51 nearby F and G dwarfstars. The sample is divided into two kinematically distinct subsampleswith 35 and 16 stars that are representative of the Galactic thin andthick discs, respectively. The analysis is based on spectral synthesisof the forbidden [CI] line at 872.7nm using spectra of very highresolution (R~ 220000) and high signal-to-noise ratio (S/N >~ 300)that were obtained with the Coudé Echelle Spectrograph (CES)spectrograph by the European Southern Observatory (ESO) 3.6-m telescopeat La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for thethin and thick discs are totally merged and flat for subsolarmetallicities. The thin disc that extends to higher metallicities thanthe thick disc shows a shallow decline in [C/Fe] from [Fe/H]~ 0 and upto [Fe/H]~+0.4. The [C/O] versus [O/H] trends are well separated betweenthe two discs (due to differences in the oxygen abundances) and bear agreat resemblance to the [Fe/O] versus [O/H] trends. Our interpretationof our abundance trends is that the sources that are responsible for thecarbon enrichment in the Galactic thin and thick discs have operated ona time-scale very similar to those that are responsible for the Fe and Yenrichment [i.e. SNIa and asymptotic giant branch (AGB) stars,respectively]. We further note that there exist other observational datain the literature that favour massive stars as the main sources forcarbon. In order to match our carbon trends, we believe that the carbonyields from massive stars then must be very dependent on metallicity forthe C, Fe and Y trends to be so finely tuned in the two discpopulations. Such metallicity-dependent yields are no longer supportedby the new stellar models in the recent literature. For the Galaxy, wehence conclude that the carbon enrichment at metallicities typical ofthe disc is mainly due to low- and intermediate-mass stars, whilemassive stars are still the main carbon contributor at low metallicities(halo and metal-poor thick disc).

How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars
Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.

Abundances of Mn, Co and Eu in a sample of 20 F-G disk stars: the influence of hyperfine structure splitting
We present Mn, Co and Eu abundances for a sample of 20 disk F and Gdwarfs and subgiants with metallicities in the range-0.8≤[Fe/H]≤+0.3. We investigate the influence of hyperfinestructure (HFS) on the derived abundances of Mn and Co by using HFS datafrom different sources in the literature, as well as calculated HFS frominteraction factors A and B. Eu abundances were obtained from spectralsynthesis of one Eu II line that takes into account HFS from a series ofrecent laboratory measurements. For the lines analysed in this study, wefind that for manganese, the differences between abundances obtainedwith different HFSs are no greater than 0.10 dex. Our cobalt abundancesare even less sensitive to the choice of HFS than Mn, presenting a 0.07dex maximum difference between determinations with different HFSs.However, the cobalt HFS data from different sources are significantlydifferent. Our abundance results for Mn offer an independentconfirmation of literature results, favouring type Ia supernovae as themain nucleosynthesis site of Mn production, in contrast to trends of Mnversus metallicity previously reported in the literature. For Co, weobtain [Co/Fe]˜0.0 in the range -0.3<[Fe/H]<+0.3 and [Co/Fe]rising to a level of +0.2 when [Fe/H] decreases from -0.3 to -0.8, indisagreement with recent results in the literature. The observeddiscrepancies may be attributed to the lack of HFS in the works we usedfor comparison. Our results for Eu are in accordance with low-mass typeII supernovae being the main site of the r-process nucleosynthesis.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

The age of the Galactic thin disk from Th/Eu nucleocosmochronology. I. Determination of [Th/Eu] abundance ratios
The purpose of this work is to resume investigation of Galactic thindisk dating using nucleocosmochronology with Th/Eu stellar abundanceratios, a theme absent from the literature since 1990. A stellar sampleof 20 disk dwarfs/subgiants of F5 to G8 spectral types with-0.8≤[Fe/H]≤+0.3 was selected. In stars with such spectral typesand luminosity classes, spectral synthesis techniques must be employedif we wish to achieve acceptably accurate results. An homogeneous,self-consistent set of atmospheric parameters was determined. Effectivetemperatures were determined from photometric calibrations and Hαprofile fitting; surface gravities were obtained from Teff,stellar masses and luminosities; microturbulence velocities andmetallicities were obtained from detailed, differential spectroscopicanalysis, relative to the Sun, using equivalent widths of Fe I and Fe IIlines. Chemical abundances of the elements that contaminate the Th andEu spectral regions (Ti, V, Cr, Mn, Co, Ni, Ce, Nd, and Sm) weredetermined through spectroscopic analysis. Abundance uncertainties werethoroughly scrutinised, their average value (0.10±0.02) dex being found to be satisfactorily low. Eu and Th abundances weredetermined by spectral synthesis of one Eu II line (4129.72 Å) andone Th II line (4019.13 Å), taking into account the detailedhyperfine structures of contaminating Co lines, as well as the hyperfinestructure and isotope shift of the Eu line. Comparison of our abundanceswith literature data shows that our results exhibit a similar behaviour,but a considerably lower scatter (36% lower for Eu, and 61% lower forTh). The [Th/Eu] abundance ratios thus obtained were used, in the secondpaper of this series, to determine the age of the Galactic disk.

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Oxygen trends in the Galactic thin and thick disks
We present oxygen abundances for 72 F and G dwarf stars in the solarneighbourhood. Using the kinematics of the stars we divide them into twosub-samples with space velocities that are typical for the thick andthin disks, respectively. The metallicities of the stars range from[Fe/H] ≈ -0.9 to +0.4 and we use the derived oxygen abundances of thestars to: (1) perform a differential study of the oxygen trends in thethin and the thick disk; (2) to follow the trend of oxygen in the thindisk to the highest metallicities. We analyze the forbidden oxygen linesat 6300 Å and 6363 Å as well as the (NLTE afflicted) tripletlines around 7774 Å. For the forbidden line at 6300 Å wehave spectra of very high S/N (>400) and resolution (R ≳ 215000). This has enabled a very accurate modeling of the oxygen line andthe blending Ni lines. The high internal accuracy in our determinationof the oxygen abundances from this line is reflected in the very tighttrends we find for oxygen relative to iron. From these abundances we areable to draw the following major conclusions: (i) That the [O/Fe] trendat super-solar [Fe/H] continues downward which is in concordance withmodels of Galactic chemical evolution. This is not seen in previousstudies as it has not been possible to take the blending Ni lines in theforbidden oxygen line at 6300 Å properly into account; (ii) Thatthe oxygen trends in the thin and the thick disks are distinctlydifferent. This confirms and extends previous studies of the otherα-elements; (iii) That oxygen does not follow Mg at super-solarmetallicities; (iv) We also provide an empirical NLTE correction for theinfrared O I triplet that could be used for dwarf star spectra with aS/N such that only the triplet lines can be analyzed well, e.g. stars atlarge distances; (v) Finally, we find that Gratton et al. (1999)overestimate the NLTE corrections for the permitted oxygen triplet linesat ˜7774 Å for the parameter space that our stars span.Based on observations collected at the European Southern Observatory, LaSilla and Paranal, Chile, Proposals #65.L-0019, 67.B-0108, and69.B-0277.The full Table 4 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/415/155

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars
Based on spectra from F and G dwarf stars, we present elementalabundance trends in the Galactic thin and thick disks in the metallicityregime -0.8<˜ [Fe/H] <˜ +0.4. Our findings can besummarized as follows. 1) Both the thin and the thick disks show smoothand distinct abundance trends that, at sub-solar metallicities, areclearly separated. 2) For the alpha -elements the thick disk showssignatures of chemical enrichment from SNe type Ia. 3) The age of thethick disk sample is in the mean older than the thin disk sample. 4)Kinematically, there exist thick disk stars with super-solarmetallicities. Based on these findings, together with other constraintsfrom the literature, we discuss different formation scenarios for thethick disk. We suggest that the currently most likely formation scenariois a violent merger event or a close encounter with a companion galaxy.Based on kinematics the stellar sample was selected to contain starswith high probabilities of belonging either to the thin or to the thickGalactic disk. The total number of stars are 66 of which 21 belong tothe thick disk and 45 to the thin disk. The analysis is based onhigh-resolution spectra with high signal-to-noise (R ~ 48 000 and S/Ngtrsim 150, respectively) recorded with the FEROS spectrograph on LaSilla, Chile. Abundances have been determined for four alpha -elements(Mg, Si, Ca, and Ti), for four even-nuclei iron peak elements (Cr, Fe,Ni, and Zn), and for the light elements Na and Al, from equivalent widthmeasurements of ~ 30 000 spectral lines. An extensive investigation ofthe atomic parameters, log gf-values in particular, have been performedin order to achieve abundances that are trustworthy. Noteworthy is thatwe find for Ti good agreement between the abundances from Ti I and TiIi. Our solar Ti abundances are in concordance with the standardmeteoritic Ti abundanceBased on observations collected at the European Southern Observatory, LaSilla, Chile, Proposals #65.L-0019(B) and 67.B-0108(B).Full Tables \ref{tab:linelist} and \ref{tab:abundances} are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/527

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Микроскоп
Ректацензија:20h57m40.07s
Deклинација:-44°07'45.7"
Apparent магнитуда:6.518
Даљина:21.617 parsecs
Proper motion RA:-516.6
Proper motion Dec:-976.6
B-T magnitude:7.207
V-T magnitude:6.575

Каталог и designations:
Proper имена   (Edit)
HD 1989HD 199288
TYCHO-2 2000TYC 7976-1340-1
USNO-A2.0USNO-A2 0450-39349959
HIPHIP 103458

→ Захтевај још каталога од VizieR